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Abstract— We consider the problem of nonlinear stochastic
optimal control. This problem is thought to be fundamentally
intractable owing to Bellman’s “curse of dimensionality”. We
present a result that shows that repeatedly solving an open-
loop deterministic problem from the current state, similar to
Model Predictive Control (MPC), results in a feedback policy
that is O(ε4) near to the true global stochastic optimal policy.
Furthermore, empirical results show that solving the Stochastic
Dynamic Programming (DP) problem is highly susceptible to
noise, even when tractable, and in practice, the MPC-type
feedback law offers superior performance even for stochastic
systems.

Index Terms— Stochastic Optimal Control, Nonlinear Sys-
tems, Model Predictive Control.

I. INTRODUCTION

In this paper, we consider the problem of finite time non-
linear stochastic optimal control. We present a fundamental
result that establishes that repeatedly solving a deterministic
optimal control, or open-loop problem, from the current state,
results in a feedback policy that is O(ε4) near-optimal to
the optimal stochastic feedback policy, in terms of a small
noise parameter ε. Although near-optimal, empirical evidence
shows that this Model Predictive Control (MPC)-type policy
is the best we can do in practice, in the sense that albeit
the optimal stochastic law should, in theory, have better
performance, solving these problems is highly susceptible to
noise, and in reality, the MPC law gives better performance.
Thus, this result cuts the Gordian knot of the trade-off
between tractability and optimality in stochastic feedback
control problems, showing that, in practice, “what is tractable
is also optimal”. In this paper, we consider the case where a
model is available for the control synthesis, we consider the
case of data-based control in another paper [26].

A large majority of sequential decision making problems
under uncertainty can be posed as a nonlinear stochastic
optimal control problem that requires the solution of an asso-
ciated Dynamic Programming (DP) problem, however, as the
state dimension increases, the computational complexity goes
up exponentially in the state dimension [4]: the manifestation
of the so called Bellman’s infamous “curse of dimensionality
(CoD)” [3]. To understand the CoD better, consider the
simpler problem of estimating the cost-to-go function of a
feedback policy µt(·). Let us further assume that the cost-
to-go function can be “linearly parametrized” as: Jµt (x) =∑M
i=1 α

i
tφi(x), where the φi(x)’s are some a priori basis

functions. Then the problem of estimating Jµt (x) becomes
that of estimating the parameters ᾱt = {α1

t , · · · , αMt }. This
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Fig. 1: Practical optimality of the deterministic nonlinear feedback law i.e. MPC on
stochastic problems. The data shown are results of solving the stochastic optimal
control problem on a nonlinear 1-D system shown in Section V-A (System 1) using the
two methods. The lines in the plot denote the mean value and the shade denotes the
standard deviation of the corresponding metric. J represents the cost incurred and ε is
a parameter used to modulate the noise level. It is easy to infer from the figure that in
practice, the deterministic feedback law is not only better at handling higher noises, it
is also much more reliable, as seen from the low variance in the performance. While
DP, in addition to the lack of scalability is also susceptible to noise.

can be done using numerical quadratures given knowledge of
the model, termed Approximate DP (ADP), or alternatively,
in Reinforcement Learning (RL), simulations of the process
under the policy µt, xt

µt(xt)−−−−→ xt+1 → · · · , is used to get an
approximation of the parameters by sampling, and solve the
equation above [4], [10]. But, as the dimension d increases,
the number of basis functions, and more importantly, the
number of evaluations required go up exponentially. There
has been recent success using the Deep RL paradigm where
deep neural networks are used as nonlinear function ap-
proximators to keep the parametrization tractable [2], [11],
[12], [23], [24], however, the training times required for
these approaches, and the variance of the solutions, is still
prohibitive. Hence, the primary problem with ADP/ RL
techniques is the CoD inherent in the complex representa-
tion of the cost-to-go function, and the exponentially large
number of evaluations required for its estimation resulting
in high solution variance which makes them unreliable and
inaccurate.

In the case of continuous state, control and observation
space problems, the Model Predictive Control [15], [20]
approach has been used with a lot of success in the control
system and robotics community. For deterministic systems,
the process results in solving the original DP problem
in a recursive online fashion. However, stochastic control
problems, and the control of uncertain systems in general,
is still an unresolved problem in MPC. As succinctly noted
in [15], the problem arises due to the fact that in stochastic
control problems, the MPC optimization at every time step



cannot be over deterministic control sequences, but rather has
to be over feedback policies, which is, in general, difficult
to accomplish since a tractable parameterization of such
policies to perform the optimization over, is, in general,
unavailable. Thus, the tube-based MPC approach, and its
stochastic counterparts, typically consider linear systems [6],
[16], [21] for which a linear parametrization of the feedback
policy suffices but the methods become intractable when
dealing with nonlinear systems [14]. In more recent work,
event-triggered MPC [9], [13] keeps the online planning
computationally efficient by triggering replanning in an event
driven fashion rather than at every time step. We note that
event-triggered MPC inherits the same issues mentioned
above with respect to the stochastic control problem, and
consequently, the techniques are intractable for nonlinear
systems.

The basic issue at work above is that, albeit solving
the open-loop problem via the Minimum Principle [5] is
much easier, solving for the optimal feedback control under
uncertainty requires the solution of the DP equation, which
is intractable. Moreover, this also begs the question, since
all systems are subject to uncertainty, what is the utility of
deterministic optimal control?
Contributions: In this work, we establish that the basic MPC
approach of solving the deterministic open-loop problem at
every time step results in a near-optimal policy, to O(ε4),
for a nonlinear stochastic system. The result uses a pertur-
bation expansion of the cost-to-go function in terms of a
perturbation parameter ε. We show the global optimality of
the open-loop solution obtained by satisfying the Minimum
Principle using the classical Method of Characteristics [7]
thereby establishing that the MPC feedback law is indeed
the optimal deterministic feedback law. We also obtain the
true linear feedback gain equations of the optimal deter-
ministic policy as a by-product, which shows it to be very
different from the Riccati equation governing a typical LQR
perturbation feedback design [5]. Finally, albeit the MPC
law is only “near-optimum”, our empirical evidence shows
that this deterministic law has better performance than the
optimal stochastic law, even for stochastic systems where
the DP problem can be solved numerically, showing the
susceptibility of the DP problem to noise. Thus, in practice,
the MPC law is optimal. In contrast to [18], we show fourth
order near-optimality to the optimal stochastic solution, the
global optimality of the open-loop solution without which
MPC is simply a heuristic, and empirical evidence regarding
the superiority of MPC to stochastic DP even when DP is
feasible.

The rest of the document is organized as follows: Sec-
tion II states the problem, Section III presents three fun-
damental results that represent the three legs of the stool
that supports the fact that the MPC feedback law is near-
optimal, which is established in Section IV. We illustrate our
results empirically in Section V using simple 1-dimensional
examples for which the stochastic DP problem can be
solved, and more practical examples from nonlinear robotic
planning.

II. PROBLEM FORMULATION

The following outlines the finite time optimal control
problem formulation that we study in this work.

a) System Model: For a dynamic system, we denote
the state and control vectors by xt ∈ X ⊂ Rnx and ut ∈
U ⊂ Rnu respectively at time t. The motion model h :
X× U× Rnx → X is given by the equation

xt+1 = h(xt, ut, εwt); wt ∼ N (0,Σwt), (1)

where {wt} are zero mean independent, identically dis-
tributed (i.i.d) random sequences with variance Σwt , and ε
is a parameter modulating the noise input to the system.

b) Stochastic optimal control problem: The stochastic
optimal control problem for a dynamic system with initial
state x0 is defined as:

Jπ
∗
(x0) = min

π
E

[
T−1∑
t=0

c(xt, πt(xt)) + cT (xT )

]
, (2)

s.t. xt+1 = h(xt, πt(xt), εwt), where, the optimization is
over feedback policies π := {π0, π1, . . . , πT−1} and πt(·):
X → U specifies an action given the state, ut = πt(xt);
Jπ
∗
(·) : X→ R is the cost function on executing the optimal

policy π∗; ct(·, ·) : X×U→ R is the one-step cost function;
cT (·) : X→ R is the terminal cost function; T is the horizon
of the problem.

III. A PERTURBATION ANALYSIS OF OPTIMAL
FEEDBACK CONTROL

In order to derive the results in this section, we need
some additional structure on the dynamics. In essence, the
results in this section require that the time discretization of
the dynamics be small enough. Thus, let the dynamics given
in Eq.(1) be written in the form:

xt+1 = xt + (f(xt) + g(xt)ut)∆t+ εwt
√

∆t, (3)

where ε < 1 is a perturbation parameter, ωt is a white noise
sequence, and the sampling time ∆t is small enough that
the O(∆tα) terms are negligible for α > 1. The noise term
above stems from Brownian motion, and hence the

√
∆t

factor. We also assume that the instantaneous cost c(·, ·) has
the following simple form, c(x, u) = (l(x) + 1

2u
′Ru)∆t,

where R is symmetric and R � 0. The main reason to use the
above assumptions is to simplify the Dynamic Programming
(DP) equation governing the optimal cost-to-go function of
the system developed in section III-B.
In the following three subsections, we establish three basic
results that we shall use to establish the near optimality
of the MPC law in Section IV. First, we characterize the
performance of any given feedback policy as a perturbation
(series) expansion in the parameter ε. We establish that the
O(ε0) term depends only on the nominal action, while the
O(ε2) depends only on the linear part of the feedback law.
Next, we find the differential equations satisfied by these
different perturbation costs using DP and show that the
stochastic and deterministic optimal feedback laws share
the same nominal and first order costs. In the subsequent



section, we analyze the nominal/ open-loop problem using
the classical Method of Characteristics and show that the
open-loop optimal control has a unique global minimum.
As a by-product, we also obtain the equations governing the
optimal linear feedback term in the nonlinear problem, which
is shown to be very different from a traditional LQR [5].

A. Characterizing the Performance of a Feedback Policy
Let us consider a noiseless version of the system dynamics

given by (3), obtained by setting wt = 0 for all t: x̄t+1 =
x̄t + (f(x̄t) + g(x̄t)ūt)∆t, where we denote the “nominal”
state trajectory as x̄t and the “nominal” control as ūt, with
ūt = πt(x̄t), and Π = {πt}T−1

t=1 is a given control policy.
Assuming that f(·) and πt(·) are sufficiently smooth, we

can expand the dynamics about the nominal trajectory using
a Taylor series. Denoting δxt = xt − x̄t, δut = ut − ūt, we
can express,

δxt+1 = Atδxt +Btδut + St(δxt) + εwt
√

∆t, (4)

δut = Ktδxt + S̃t(δxt), (5)

where At = Inx×nx + ∂(f+gu)∆t
∂x |x̄t,ūt , Bt =

∂(f+gu)∆t
∂u |x̄t,ūt = g(x̄t)∆t, Kt = ∂πt

∂x |x̄t , and St(·), S̃t(·)
are second and higher order terms in the respective
expansions. Similarly, we can expand the instantaneous cost
c(xt, ut) about the nominal values (x̄t, ūt) as,

c(xt, ut) =
(
l(x̄t) + Ltδxt +Ht(δxt)+

1

2
ū′tRūt + δu′tRūt +

1

2
δu′tRδut

)
∆t, (6)

cT (xT ) = cT (x̄T ) + CT δxT +HT (δxT ), (7)

where Lt = ∂l
∂x |x̄t , CT = ∂cT

∂x |x̄t , and Ht(·) and HT (·) are
second and higher order terms in the respective expansions.

Using (4) and (5), we can write the closed-loop dynamics
of the trajectory (δxt)

T
t=1 as,

δxt+1 = (At +BtKt)︸ ︷︷ ︸
Āt

δxt +BtS̃t(δxt) + St(δxt)︸ ︷︷ ︸
S̄t(δxt)

+ εwt
√

∆t, (8)

where Āt represents the linear part of the closed-loop sys-
tems and the term S̄t(·) represents the second and higher
order terms in the closed-loop system. Similarly, the closed-
loop incremental cost given in (6) can be expressed as

c(xt, ut) = {l(x̄t) +
1

2
ū′tRūt}∆t︸ ︷︷ ︸
c̄t

+

[Lt + ū′tRKt]∆t︸ ︷︷ ︸
C̄t

δxt + H̄t(δxt).

Therefore, the cumulative cost of any given closed-
loop trajectory (xt, ut)

T
t=1 can be expressed as, J π =∑T−1

t=1 c(xt, ut = πt(xt)) + cT (xT ), which can be written
in the following form:

J π =

T∑
t=1

c̄t +

T∑
t=1

C̄tδxt +

T∑
t=1

H̄t(δxt), (9)

where c̄T = cT (x̄T ), C̄T = CT .
We first show the following critical result. Note: Due to

paucity of space, the proofs for the results shown here are
given in the extended version’s appendix [17].

Lemma 1: Given any sample path, the state perturbation
equation given in (8) can be equivalently characterized as

δxt = δxlt + et, δx
l
t+1 = Ātδx

l
t + εwt

√
∆t (10)

where et is an O(ε2) function that depends on the entire noise
history {w0, w1, · · ·wt} and δxlt evolves according to the
linear closed-loop system. Furthermore, et = e

(2)
t + O(ε3),

where e(2)
t = Āt−1e

(2)
t−1 + δxl

′

t S̄
(2)
t−1δx

l
t, e

(2)
0 = 0, and S̄

(2)
t

represents the Hessian corresponding to the Taylor series
expansion of the function S̄t(·).

Next, we have the following result for the expansion of
the cost-to-go function Jπ .

Lemma 2: Given any sample path, the cost-to-go under a
policy can be expanded about the nominal as:

J π =
∑
t

c̄t︸ ︷︷ ︸
J̄π

+
∑
t

C̄tδx
l
t︸ ︷︷ ︸

δJπ1

+
∑
t

δxl
′

t H̄
(2)
t δxlt + C̄te

(2)
t︸ ︷︷ ︸

δJπ2

+O(ε3),

where H̄(2)
t denotes the second order coefficient of the Taylor

expansion of H̄t(·).
Now, we show the following important result.
Proposition 1: The mean of the cost-to-go function Jπ

obeys: E[J π] = Jπ,0 + ε2Jπ,1 + ε4Jπ,2 + R, for some
constants Jπ,k, k = 0, 1, 2, where R is o(ε4), i.e.,
limε→0 ε

−4R = 0. Furthermore, the term Jπ,0 arises solely
from the nominal control sequence while Jπ,1 is solely
dependent on the nominal control and the linear part of the
perturbation closed-loop.

Remark 1: The physical interpretation of the result above
is as follows: it shows that the ε0 term, Jπ,0, in the cost,
stems from the nominal action of the control policy, the ε2

term, Jπ,1, stems from the linear feedback action of the
closed-loop, while the higher order terms stem from the
higher order terms in the feedback law. In the next section,
we use Dynamic Programming (DP), to find the equations
satisfied by these terms.

B. A Closeness Result for Optimal Stochastic and Determin-
istic Control

The DP equation for the optimal control problem on the
system in Eq.(3) is given by:

Jt(x) = min
ut
{c(x, ut) + E[Jt+1(x′)]}, (11)

where x′ = x + f(x)∆t + g(x)ut∆t + εωt
√

∆t and Jt(x)
denotes the cost-to-go of the system given that it is at state
x at time t. The above equation is marched back in time
with terminal condition JT (x) = cT (x), and cT (·) is the
terminal cost function. Let ut(·) denote the corresponding
optimal policy. Then, it follows that the optimal control ut
satisfies (since the argument to be minimized is quadratic in
ut)

ut = −R−1g′Jxt+1, (12)



where Jxt+1 = ∂Jt+1

∂x . Further, let udt (·) be the optimal control
policy for the deterministic system, i.e., Eq. (3) with ε =
0. The optimal cost-to-go of the deterministic system, φt(·)
satisfies the deterministic DP equation:

φt(x) = min
ut

[c(x, ut) + φt+1(x′)], (13)

where x′ = x + (f(x) + g(x)ut)∆t. Then, identical to the
stochastic case, udt = −R−1g′φxt . Next, let ϕt(·) denote the
cost-to-go of the deterministic policy when applied to the
stochastic system, i.e., udt applied to Eq. (3) with ε > 0. The
cost-to-go ϕt(·) satisfies the policy evaluation equation:

ϕt(x) = c(x, udt (x)) + E[ϕt+1(x′)], (14)

where now x′ = x+(f(x)+g(x)udt (x))∆t+εωt
√

∆t. Note
the difference between the equations (13) and (14). Then,
we have the following key result. An analogous version
of the following result was originally proved in a seminal
paper [8] for first passage problems. We provide a simple
derivation of the result for a finite time final value problem
below.

Proposition 2: The cost function of the optimal stochastic
policy, Jt, and the cost function of the “deterministic policy
applied to the stochastic system”, ϕt, satisfy: Jt(x) =
J0
t (x) + ε2J1

t (x) + ε4J2
t (x) + · · · , and ϕt(x) = ϕ0

t (x) +
ε2ϕ1

t (x) + ε4ϕ2
t (x) + · · · . Furthermore, J0

t (x) = ϕ0
t (x), and

J1
t = ϕ1

t (x), for all t, x.
Proof: We show a sketch here for the case of a scalar

state, please refer to [17] for the complete proof.
Due to Proposition 1, the optimal cost function satisfies:
Jt(x) = J0

t + ε2J1
t + ε4J2

t + · · · . Next, we substitute the
above equation into the DP equation (11), along with the
minimizing control (12) to obtain a perturbation expansion
of the optimal cost function as a power series in ε2. Equating
the O(ε0) and O(ε2) terms on both sides results in governing
equations for the J0

t and J1
t terms:

J0
t = l∆t + 1

2
g2

r (J0,x
t+1)2∆t + (f + g

−g
r
J0,x
t+1)︸ ︷︷ ︸

f̄0

J0,x
t+1∆t +

J0
t+1,with the terminal condition J0

T = cT , and

J1
t = (f + g

−g
r
J0,x
t+1)J1,x

t+1︸ ︷︷ ︸
=f̄0

∆t + 1
2J

0,xx
t+1 ∆t + J1

t+1,with

terminal condition J1
T = 0.

We also know that the cost function of the deterministic
policy when applied to the stochastic system satisfies ϕt =
ϕ0
t + ε2ϕ1

t + · · · . Similar to above, we substitute this expres-
sion into the policy evaluation equation (14), along with the
deterministic optimal control expression udt = −R−1g′φxt+1,
to obtain the governing equations for ϕ0

t and ϕ1
t . These

equations, when compared with those for J0
t and J1

t , are
seen to be identical with the same terminal conditions thereby
proving the result.

C. A Perturbation Expansion of Deterministic Optimal Feed-
back Control: the Method of Characteristics (MOC)

In this section, we will use the classical Method of Char-
acteristics to derive some results regarding the deterministic
optimal control problem, and in particular, regarding the
open-loop solution [7]. In particular, we will show that
satisfying the Minimum Principle is sufficient to assure us
of a global optimum to the open-loop problem. We shall
also do a perturbation expansion of the DP equation around
the Characteristic curves to obtain the equations governing
the linear feedback term, and show that this gain is entirely
different from an LQR design. Since the classical MOC
is derived in continuous-time, we derive the following
results in continuous-time, the extension to the discrete-
time case is given in Remark 3. Also, for simplicity, we
derive the following for the case of a scalar state and
control, please see [17] for the vector case.

Let us recall the Hamilton-Jacobi-Bellman (HJB) equation
in continuous-time under the same assumptions as above, i.e.,
quadratic in control cost c(x, u) = l(x) + 1

2ru
2, and affine

in control dynamics ẋ = f(x) + g(x)u, (the discrete-time
case for a sufficiently small discretization time then follows,
please see Remark 3) [5]:

∂J

∂t
+ l − 1

2

g2

r
J2
x + fJx = 0, (15)

where J = Jt(xt), Jx = ∂J
∂xt

, and the equation is integrated
back in time with terminal condition JT (xT ) = cT (xT ).
Define ∂J

∂t = p, Jx = q, then the HJB can be written as
F (t, x, J, p, q) = 0, where F (t, x, J, p, q) = p+ l− 1

2
g2

r q
2 +

fq. One can now write the Lagrange-Charpit equations [7]
for the HJB as:

ẋ = Fq = f − g2

r
q, (16)

q̇ = −Fx − qFJ = −lx +
ggx

r
q2 − fxq, (17)

with the terminal conditions x(T ) = xT , q(T ) = cxT (xT ),
where Fx = ∂F

∂x , Fq = ∂F
∂q , gx = ∂g

∂x , lx = ∂l
∂x , fx = ∂f

∂x

and cxT = ∂cT
∂x .

Given a terminal condition xT , the equations above can be
integrated back in time to yield a characteristic curve of the
HJB PDE. Now, we show how one can use these equations
to get a local solution of the HJB, and consequently, the
feedback gain Kt.
Suppose now that one is given an optimal nominal trajectory
x̄t, t ∈ [0, T ] for a given initial condition x0, from solving the
open-loop optimal control problem. Let the nominal terminal
state be x̄T . We now expand the HJB solution around this
nominal optimal solution. To this purpose, let xt = x̄t+δxt,
for t ∈ [0, T ]. Then, expanding the optimal cost function
around the nominal yields: J(xt) = J̄t +Gtδxt + 1

2Ptδx
2
t +

· · · , where J̄t = Jt(x̄t), Gt = ∂J
∂xt
|x̄t , Pt = ∂2J

∂x2
t
|x̄t . Then,

the co-state q = ∂J
∂xt

= Gt + Ptδxt + · · · .
For simplicity, we assume that gx = 0 (this is relaxed but
at the expense of a rather tedious derivation shown in the



appendix of [17]). Hence,

d

dt
(x̄t + δxt)︸ ︷︷ ︸
˙̄xt+δẋt

= f(x̄t + δxt)︸ ︷︷ ︸
(f̄t+f̄xt δxt+··· )

−g
2

r
(Gt + Ptδxt + · · · ),

where f̄t = f(x̄t), f̄
x
t = ∂f

∂xt
|x̄t . Expanding in powers of the

perturbation variable δxt, the equation above can be written
as (after noting that ˙̄xt = f̄t − g2

r Gt due to the nominal
trajectory x̄t satisfying the characteristic equation):

δẋt = (f̄xt −
g2

r
Pt)δxt +O(δx2

t ). (18)

Next, we have: dq
dt = −lx − fxq

d

dt
(Gt + Ptδxt + · · · ) = −(l̄xt + l̄xxt δxt + · · · )

−(f̄xt + f̄xxt δxt + · · · )(Gt + Ptδxt + · · · ), (19)

where f̄xxt = ∂2f
∂x2 |x̄t , l̄xt = ∂l

∂x |x̄t , l̄
xx
t = ∂2l

∂x2 |x̄t . Using
d
dtPtδxt = Ṗtδxt + Pt ˙δxt, substituting for ˙δxt from (18),
and expanding the two sides above in powers of δxt yields:
Ġt+(Ṗt+Pt(f̄

x
t −

g2

r Pt))δxt+ · · · = −(l̄xt + f̄xt Gt)−(l̄xxt +
f̄xt Pt + f̄xxt Gt)δxt + · · · .
Equating the first two powers of δxt yields:

Ġt + l̄xt + f̄xt Gt = 0, (20)

Ṗt + lxxt + Ptf̄
x
t + f̄xt Pt − Pt

g2

r
Pt + f̄xxt Gt = 0. (21)

The optimal feedback law is given by: ut(xt) = ūt+Ktδxt+
O(δx2

t ), where Kt = − grPt.
Now, we provide the final result for the general vector

case, with a state dependent control influence matrix (please
see [17] for details). Let the control influence matrix be

gives as: G =

g
1
1(x) · · · gp1(x)

. . .
g1
n(x) · · · gpn(x)

 =
[
Γ1(x) · · ·Γp(x)

]
,

i.e., Γj represents the control influence vector correspond-
ing to the jth input. Let Ḡt = G(x̄t), where {x̄t} rep-
resents the optimal nominal trajectory. Further, let F =[
f1(x) · · · fn(x)

]ᵀ
denote the drift/ dynamics of the system.

Let Gt = [G1
t · · ·Gnt ]ᵀ, and R−1Ḡᵀt Gt = −[ū1

t · · · ū
p
t ]

ᵀ, de-
note the optimal nominal co-state and control vectors respec-

tively. Let F̄xt =


∂f1
∂x1
· · · ∂f1∂xn
. . .

∂fn
∂x1
· · · ∂fn∂xn

 |x̄t , and similarly Γ̄j,xt =

∇xΓj |x̄t . Further, define: F̄xx,it =


∂2f1
∂x1∂xi

· · · ∂2f1
∂xn∂xi

. . .
∂2fn
∂x1∂xi

· · · ∂2fn
∂xn∂xi

 |x̄t ,
and Γ̄j,xx,it similarly for the vector function Γj , and Ḡx,it =
∂g11
∂xi
· · · ∂g

p
1

∂xi
. . .

∂g1n
∂xi
· · · ∂g

p
n

∂xi

 |x̄t . Finally, define At = F̄xt +
∑p
j=1 Γ̄j,xt ūjt ,

L̄xt = ∇xl|x̄t , and L̄xxt = ∇2
xxl|x̄t .

Proposition 3: Given the above definitions, the following
result holds for the evolution of the co-state/ gradient vector
Gt, and the Hessian matrix Pt, of the optimal cost function
Jt(xt), evaluated on the optimal nominal trajectory x̄t, t ∈
[0, T ]:

Ġt + L̄xt +Aᵀ
tGt = 0, (22)

Ṗt +Aᵀ
t Pt + PtAt + L̄xxt

+

n∑
i=1

[F̄xx,it +

p∑
j=1

Γ̄j,xx,it ūjt ]G
i
t −K

ᵀ
t RKt = 0, (23)

Kt = −R−1[

n∑
i=1

Ḡx,i,ᵀt Git + Ḡᵀt Pt]. (24)

with terminal conditions GT = ∇xcT |x̄T , and PT =
∇2
xxcT |x̄T and the control input with the optimal linear

feedback is given by ut = ūt +Ktδxt.
Remark 2: Not LQR. The co-state equation (22) above is

identical to the co-state equation in the Minimum Principle
[5], [19]. However, the Hessian Pt equation (23) is Riccati-
like with some important differences: note the extra second
order terms due to F̄xx,it and Γ̄xx,it in the second line
stemming from the nonlinear drift and input influence vectors
and an extra term in the gain equation (24) coming from the
state dependent influence matrix. These terms are not present
in the LQR Riccati equation, and thus, it is clear that this
cannot be an LQR, or perturbation feedback design (Ch. 6,
[5]). If the input influence matrix is independent of the state,
the first term in the second line remains, and hence, it is still
different from the LQR case.

Remark 3: Discrete-time case. For the discrete-time case
with small discretization time ∆t, one would discretize
the noiseless model with a forward Euler approximation as
xt+1 = xt + (F(xt) + G(xt)ut)∆t and the above equations
as:

Gt = L̄xt +Aᵀ
tGt+1, (25)

Pt = Aᵀ
t Pt+1At + L̄xxt +

n∑
i=1

[F̄dxx,it + (26)

p∑
j=1

Γ̄dj,xx,it ūjt ]G
i
t+1 −K

ᵀ
t (Rt +Bᵀ

t Pt+1Bt)Kt,

Kt = −(Rt +Bᵀ
t Pt+1Bt)

−1[

n∑
i=1

Ḡdx,i,ᵀt Git+1+

Bᵀ
t Pt+1At]. (27)

where, At = I + (F̄xt +
∑p
j=1 Γ̄j,xt ūjt )∆t, Bt = Ḡ∆t,

F̄dxx,it = F̄xx,it ∆t, Γ̄dj,xx,it = Γ̄j,xx,it ∆t, Ḡdx,it = Ḡx,it ∆t.
Remark 4: Convexity and Global Minimum. Recall the

Lagrange-Charpit equations for solving the HJB (16), (17).
Given an unconstrained control, from the theory of the MOC
(under standard smoothness assumptions on the involved
functions), the characteristic curves are unique, and do not
intersect. Therefore, the open-loop optimal trajectory, found
by satisfying the Minimum Principle is also the unique global



minimum even though the open-loop problem is non-convex.
This observation is formalized in the following result.

Proposition 4: Global Optimality of open-loop solution.
Let the cost functions l(·), cT (·), the drift f(·) and the
input influence function g(·) be C2, i.e., twice continuously
differentiable. Then, an optimal trajectory that satisfies the
Minimum Principle from a given initial state x0, is the unique
global minimum of the open-loop problem starting at the
initial state x0.

IV. THE NEAR-OPTIMALITY OF MODEL
PREDICTIVE CONTROL

Consider now a Model Predictive approach to solving
the stochastic control problem. We outline the algorithmic
procedure below to highlight that our advocated procedure is
slightly different from the traditional MPC approach studied
in the literature [15], [20].

Algorithm 1: Shrinking Horizon MPC

1 Given: initial state x0, time horizon T , cost
c(x, u) = l(x) + 1

2ru
2, and terminal cost cT (x).

2 Set H = T , xi = x0.
3 while H > 0 do

1) Solve the open-loop (noise free) optimal control
problem (Eq. 2) for initial state xi and horizon H .
Let optimal sequence U∗ = {u0, u1, · · · , uH−1}.

2) Apply the first control u0 to the stochastic
system, and observe the next state xn.

3) set H = H − 1, xi = xn.
4 end

Remark 5: In traditional MPC [15], [20], the horizon H
to solve the open-loop problem over is fixed. The setting is
deterministic, and the necessity of replanning for the problem
stems from the assumption that the actual problem horizon
is infinite. In lieu, our problem horizon is finite, the repeated
replanning takes place over progressively shorter horizons,
and the setting is stochastic.

Theorem 1: Near-Optimality of MPC. The MPC feedback
policy obtained from the recursive application of the MPC
algorithm is near-optimal to O(ε4) to the optimal stochastic
feedback policy for the stochastic system (3).

Proof: We know that J0
t (x) = ϕ0

t (x), and J1
t (x) =

ϕ1
t (x) from Proposition 2, for all (t, x). Owing to the

uniqueness and global optimality of the open-loop from
Proposition 4, it follows that the nominal control sequence
found by the MPC procedure coincides with the nominal
action of the optimal deterministic feedback law for any state
x and any time t. Therefore, the result follows.

A. Summary of the Near-Optimality Result and its Implica-
tions

The result above establishes that repeatedly solving the
deterministic optimal control problem from the current state
results in a near-optimal stochastic policy. We examine two
particularly important consequences in the following.

0 10 20 30 40 50

Fixed horizon length (H)

0

100

200

300

C
os

t

25.4 -

Fixed Horizon MPC

Shrinking Horizon MPC

(a) Without state constraints

0 10 20 30 40 50

Fixed horizon length (H)

1000

2000

3000

C
os

t

260.4 -

Fixed Horizon MPC

Shrinking Horizon MPC

(b) With state constraints

Fig. 2: The figure shows the sub-optimal behavior of the Fixed horizon MPC when
applied to a state transition problem for a car-like robot with noise of ε = 0.5.
The horizon length H in fixed horizon MPC has to be carefully chosen to achieve
a reasonable performance - albeit still worse - when compared to shrinking horizon
MPC calculated for T = 50. The constraints in the state are imposed using penalty
functions. The shrinking horizon MPC algorithm is shown in Algorithm 1.

a) Stochastic MPC: The MPC procedure we propose
(shrinking horizon MPC) is slightly different from the tradi-
tional MPC (fixed horizon MPC) because of our shrinking
horizon whereas typically MPC considers as a fixed horizon
H that is small compared to the actual horizon T , i.e.,
H � T . Albeit the stability of the traditional MPC approach
can be established, the actual domain of attraction of such a
policy is limited by the fact that the policy needs to get the
system into a control invariant subset containing the origin
in at most H steps [15]. In practice, this shows up in the
fact that such policies tend to be sluggish and almost never
succeed in getting to the goal (please see Figure 2). Thus,
in our opinion, in practice, as well as in theory, we should
consider a problem with a finite horizon and with uncertainty,
since that is a better approximation of the real problem and
results in better performance.
A major bottleneck with MPC under uncertainty, in general,
and stochastic MPC in particular [15], is that the MPC
search needs to be over (time-varying) feedback policies
rather than control sequences owing to the stochasticity of
the problem, which leads to an intractable optimization for
nonlinear systems. However, as our result demonstrates, the
MPC feedback law we propose is near-optimal to fourth
order. Further, as will be seen from our empirical results,
in practice, solving the stochastic DP problem is highly
sensitive to noise, and MPC still gives the best performance.
A further important practical consequence of Theorem 1
is that we can get performance comparable to MPC, by
wrapping the optimal linear feedback law around the nominal
control sequence (ut = ūt + Ktδxt), and replanning the
nominal sequence only when the deviation is large enough.
This is similar to the event driven MPC philosophy [9], [13].
This event driven replanning approach is also demonstrated
in the next section.

b) Reinforcement Learning: The problem of Reinforce-
ment learning can be construed as finding the optimal
feedback policy for a stochastic nonlinear dynamical system
[4]. Typically, this is done via simulations or rollouts of the
dynamical system of interest, which allied with a suitable
function approximator such as a (deep) neural net, yields
a nonlinear feedback policy. However, these methods tend
to be highly data intensive, slow to converge, and suffer



from extremely high variance in the solution since they try
to solve the DP equation. This is a manifestation of the
inherent curse of dimensionality in trying to solve the DP
problem. Thus, in our opinion, albeit the DP equation is an
excellent analytical tool to study the structure of the feedback
problem, nonetheless, it is not the correct synthesis tool.
In fact, it is much easier to repeatedly solve the open-loop
problem as prescribed by MPC. Of course, there remains
the problem of whether we can solve the open-loop problem
online. In our opinion, this is feasible today, when allied with
efficient computational algorithms like iLQR [22] that exploit
the beautiful causal structure of optimal control problems,
suitable high performance computing (HPC) modifications,
and suitable randomization of the computations that can help
us very efficiently estimate the system parameters involved.
In fact, this is the subject of the second part of this paper on
data based control [26].

V. EMPIRICAL RESULTS

This section is divided into two subsections. Subsection V-
A shows the practical optimality of MPC and the unreliable
nature of the DP solution using simple 1-D problems. Sub-
section V-B shows the near-optimality of the linear feedback
law and the effect of replanning to maintain near-optimality
on stochastic problems using robotic planning problems. It
also shows the suboptimal nature of applying MPC in its
traditional form.
To all the systems considered below, process noise ωt mod-
eled as an additive white Gaussian noise with mean zero and
a standard deviation of ūavg is added. ε is a scaling parameter
that is varied to analyze the influence of the magnitude of
the noise. Numerical optimization is performed using the
Casadi [1] framework employing the Ipopt [25] solver.

A. Comparison of Stochastic DP and MPC: 1-D problems

The following two 1-D systems are considered to test the
optimality of MPC on stochastic systems by comparing it to
the DP solution.
System 1: xt+1 = xt + (−cos(xt) + ut)∆t+ εωt

√
∆t,

System 2: xt+1 = xt+(−xt−2x2
t−0.5x3

t+ut)∆t+εωt
√

∆t.
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Fig. 3: Performance comparison between MPC and DP on the systems discussed. The
data labeled as DP (red) corresponds to the exact stochastic DP, where it is solved for
a particular ε value and tested out on the same value of ε. The lines in the plot denote
the mean value and the shade denotes the standard deviation of the corresponding
metric obtained from 100 Monte Carlo simulations.

The time horizon for both the problems is 50 steps with
∆t = 0.02s. x0 = 1 and xT = 4.8. The cost function
considered is c(x, u) = 1/2(x′Qx + u′Ru)∆t, cT (x) =

(1/2)x′QTx. MPC is solved as shown in Algorithm 1. DP
is numerically solved by discretizing the space domain -
[0, 5] into 200 states and solving Bellman’s equation (11)
for every state and at every time-step. The critical part in
solving the DP problem is evaluating the expectation of the
cost-to-go function which is done by taking samples and
finding their mean. The optimal control is given by Eq.
(12). One can infer from Fig. 3 that MPC, equivalently
deterministic DP (DP with ε = 0.0) actually performs
better than its stochastic counterpart even for non-zero noise.
Thus, there are no significant gains (in some cases makes it
worse) when solving the stochastic DP problem, in practice
even for simple cases such as these. The closeness between
the DP solution and MPC also adds empirical evidence
to the result in Proposition 4, that there is only a unique
global optimum for the open-loop when working with cost
functions and dynamics that are quadratic and affine in
control, respectively.

B. Robotic Planning problems
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Fig. 4: Cost evolution over a feasible range of ε for a car-like robot system, where ε
is a measure of the noise in the system. Note that the performance of T-PFC is close
to MPC for a wide range of noise levels (ε < 0.4) but the cost and more importantly
the standard deviation of the cost is seen to be larger than MPC as noise increases.
T-PFC2 performs very similar to MPC, i.e. the mean and the standard deviation of the
cost of T-PFC2 matches that of MPC, achieving it by replanning efficiently as seen
in the subfigure (b). The key takeaways are: 1) the optimal policy for finite horizon
stochastic optimal control problem is to use MPC as opposed to MPC-FH which is
catastrophically off, 2) Significant gain in computation is achieved by using the linear
feedback policy T-PFC/T-PFC2 without much loss in performance.

This section shows empirical results obtained by designing
the feedback policy as discussed in section III-C and IV for a
car-like robot, cart-pole, car with two trailers and a quadrotor
tasked to move from an initial state to a goal state within
a finite time. The linear feedback policy - called the Tra-
jectory optimized Perturbation Feedback Controller (T-PFC)
[18] here - involves 2 steps: 1) Solving the deterministic
optimal control problem to obtain the nominal trajectory, 2)
Calculating the feedback gains using Eqs. (25)-(27) for the
discrete-time case. Note that there is no online computation
involved in T-PFC. We also show the performance of our
MPC and compare it with the traditional MPC, dubbed MPC-
Fixed Horizon (MPC-FH). MPC-FH, unlike MPC, plans for
a short horizon repeatedly rather than the full time horizon
(as outlined in Section IV). In addition to that, we also show
the performance of T-PFC2 which is simply T-PFC with
cost triggered replanning, i.e. if the run time cost deviates
beyond a threshold from the nominal cost, a new nominal
is generated from the current state for the remainder of the



horizon.
The car-like robot considered has the motion model de-
scribed by ẋt = vt cos(θt), ẏt = vt sin(θt), θ̇t =
vt
L tan(φt), φ̇t = ωt and is discretized using forward Euler.
The cost function used is c(x, u) = 1/2(x′Qx + u′Ru)∆t,
cT (x) = (1/2)x′QTx, ∆t = 0.01s, Horizon = 30, Planning
Horizon for MPC-FH = 5, Replanning threshold for T-PFC2
= 20%. Similar cost functions and parameters are chosen for
the other nonlinear systems. It is evident from Figs. 4, and
5 that solving MPC for the entirety of the horizon gives the
best possible solution and is significantly better than MPC-
FH. It also shows that significant computational savings can
be achieved without losing optimality if the linear feedback
policy (T-PFC/T-PFC2) is used especially in low noise cases.
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(a) Cart-pole: Cost comparison.
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(c) Trailers: Cost comparison.
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(e) Quadrotor: Cost comparison.
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Fig. 5: Cost evolution over a feasible range of ε for different dynamical systems.

VI. CONCLUSION

In this paper, we have considered the problem of stochastic
nonlinear control. We have shown that recursively solving the
deterministic optimal control problem from the current state,
a la MPC, results in a near-optimum policy to fourth order in
a small noise parameter, and in practice, empirical evidence
shows that the MPC law performs better than the law ob-
tained by computationally solving the stochastic DP problem.
An important limitation of the method is the smoothness of
the nominal trajectory such that suitable Taylor expansions
are possible, this breaks down when trajectories are non-
smooth such as in hybrid systems like legged robots, or

maneuvers have kinks for car-like robots such as in a tight
parking application. It remains to be seen as to if, and
how, one may extend the result to such applications that are
piecewise smooth in the dynamics.
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