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Abstract. We consider the problem of robotic planning under uncer-
tainty. This problem may be posed as a stochastic optimal control prob-
lem, complete solution to which is fundamentally intractable owing to
the infamous curse of dimensionality. We report the results of an ex-
tensive simulation study in which we have compared two methods, both
of which aim to salvage tractability by using alternative, albeit inexact,
means for treating feedback. The first is a recently proposed method
based on a near-optimal “decoupling principle” for tractable feedback
design, wherein a nominal open-loop problem is solved, followed by a
linear feedback design around the open-loop. The second is Model Pre-
dictive Control (MPC), a widely-employed method that uses repeated
re-computation of the nominal open-loop problem during execution to
correct for noise, though when interpreted as feedback, this can only said
to be an implicit form. We examine a much wider range of noise levels
than have been previously reported and empirical evidence suggests that
the decoupling method allows for tractable planning over a wide range
of uncertainty conditions without unduly sacrificing performance.

Keywords: Empirical study, Optimization, Optimal Control

1 Introduction

Planning under uncertainty is a central problem in robotics. The space of cur-
rent methods includes several contenders, each with different simplifying as-
sumptions, approximations, and domains of applicability. This is a natural con-
sequence of the fact that the challenge of dealing with the continuous state, con-
trol and observation space problems, for non-linear systems and across long-time
horizons with significant noise, and potentially multiple agents, is fundamentally
intractable.

Model Predictive Control is one popular means for tackling optimal control
problems [13, 19]. The MPC approach solves a finite horizon “deterministic”
optimal control problem at every time step given the current state of the process,
performs only the first control action and then repeats the planning process at
the next time step. In terms of computation, this can be a costly endeavor and,
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when a stochastic control problem is well approximated by the deterministic
problem (when the noise is meager), much of this computation is superfluous.

In this paper we consider the generalization of a recently proposed method [25]
that uses a local feedback to control noise induced deviations from the determin-
istic (that we term the nominal) trajectory. When the deviation is too large for
the feedback to manage, replanning is triggered and it computes a fresh nomi-
nal. Otherwise, the feedback tames the perturbations during execution and no
computation is expended in replanning. Put another way, the method decouples
feedback and planning/nominal control but will fall back to replanning when
perturbations are excessive. Thus, by considering every deviation to necessitate
replanning, this approach will essentially reduce to MPC itself.

We present an empirical investigation of this decoupling approach, exploring
dimensions that are important in characterizing its performance—key among
these being the triggering of replanning. Hence, the primary focus of the study
is on understanding the performance across a wide range of noise conditions with
comparison to the “gold standard” of MPC. Figure 1 gives an overall summary
of the paper’s findings: the areas under the respective curves give the total
computational resources consumed—the savings by the decoupling method over
MPC are seen to be considerable.
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(a) A single agent.
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(b) Three agents.

Fig. 1: Computation time expended by MPC (in blue) and the decoupling algorithms described herein
(in green), at each time step for a sample experiment involving navigation. Both cases result in nearly
identical motions by the robot.The peaks in T-LQR2 and MT-LQR2 happen only when replanning
takes place. Computational effort decreases for both methods because the horizon diminishes as the
agent(s) reach their goals.(To relate to subsequent figures: noise parameter ε = 0.4 and the replan
threshold = 2% of cost deviation.)

1.1 Related Work

Robotic planning problems under uncertainty can be posed as a stochastic op-
timal control problem that requires the solution of an associated Dynamic Pro-
gramming (DP) problem, however, as the state dimension increases, the com-
putational complexity goes up exponentially [4], Bellman’s infamous “curse of
dimensionality”. There has been recent success using sophisticated (Deep) Re-
inforcement Learning (RL) paradigm to solve DP problems, where deep neural
networks are used as the function approximators [2, 10, 11, 22, 23], however, the
training time required for these approaches is still prohibitive to permit real-time
robotic planning that is considered here.

In the case of continuous state, control and observation space problems, the
Model Predictive Control [13, 19] approach has been used with a lot of success
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in the control system and robotics community. For deterministic systems, the
process results in solving the original DP problem in a recursive online fashion.
However, stochastic control problems, and the control of uncertain systems in
general, is still an unresolved problem in MPC. As succinctly noted in [13], the
problem arises due to the fact that in stochastic control problems, the MPC op-
timization at every time step cannot be over deterministic control sequences, but
rather has to be over feedback policies, which is, in general, difficult to accomplish
since a tractable parametrization of such policies to perform the optimization
over, is, in general, unavailable. Thus, the tube-based MPC approach, and its
stochastic counterparts, typically consider linear systems [7, 14, 20] for which a
linear parametrization of the feedback policy suffices but the methods become
intractable when dealing with nonlinear systems. In recent work, we have intro-
duced a “decoupling principle” that allows us to tractably solve such stochastic
optimal control problems in a near optimal fashion, with applications to highly
efficient RL and MPC implementations [17,25]. However, this prior work required
a small noise assumption. In this work, we relax this small noise assumption to
show, via extensive empirical evaluation, that even when the noise is not small,
a replan-when-necessary modification of the decoupled planning approach, akin
to event-triggered MPC [9, 12], suffices to keep the planning computationally
efficient while retaining performance comparable to MPC. We note that event-
triggered MPC inherits the same issues mentioned above with respect to the
stochastic control problem, and consequently, the techniques are only tractable
for linear systems. Lest it seem that we are being unduly critical of MPC, that is
definitely not our intention: we believe that MPC type replanning is unavoidable
in uncertain systems, instead we additionally believe that such replanning can be
substantially reduced utilizing decoupling while tractably and rigorously extend-
ing MPC to stochastic systems, i.e., the decoupled approach is not competition,
but rather complimentary, to MPC. Please also see the deeper historical context
to this discussion at the end of Section 3.1, after we have presented the basic
near-optimality result.

The problem of multiple agents further and severely compounds the plan-
ning problem since now we are also faced with the issue of a control space
that grows exponentially with the number of agents in the system. Moreover,
since the individual agents never have full information regarding the system
state, the observations are partial. Furthermore, the decision making has to be
done in a distributed fashion which places additional constraints on the net-
working and communication resources. In a multi-agent setting, the stochastic
optimal problem can be formulated in the space of joint policies. Some vari-
ations of this problem have been successfully characterized and tackled based
on the level of observability, in/dependence of the dynamics, cost functions and
communications [16, 18, 21]. This has resulted in a variety of solutions from
fully-centralized [5] to fully-decentralized approaches with many different sub-
classes [3, 15].

The major concerns of the multi-agent problem are tractability of the solu-
tion and the level of communication required during the execution of the policies.
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In this paper, we also consider a generalization of the decoupling principle to a
multi-agent, fully observed setting. We show that this leads to a spatial decou-
pling between agents in that they do not need to communicate for long periods
of time during execution. Albeit, we do not consider the problem of when and
how to replan in this paper, assuming that there exists a (yet to be determined)
distributed mechanism that can achieve this, we nonetheless show that there is a
highly significant increase in planning efficiency over a wide range of noise levels.

2 Problem Formulation

The problem of robot planning and control under noise can be formulated as a
stochastic optimal control problem in the space of feedback policies. We assume
here that the map of the environment is known and state of the robot is fully
observed. Uncertainty in the problem lies in the system’s actions.

2.1 System Model:

For a dynamic system, we denote the state and control vectors by xt ∈ X ⊂ Rnx
and ut ∈ U ⊂ Rnu respectively at time t. The motion model f : X×U×Rnu → X
is given by the equation

xt+1 = f(xt,ut, εwt); wt ∼ N (0,Σwt), (1)

where {wt} are zero mean independent, identically distributed (i.i.d) random
sequences with variance Σwt , and ε is a small parameter modulating the noise
input to the system.

2.2 Stochastic optimal control problem:

The stochastic optimal control problem for a dynamic system with initial state
x0 is defined as:

Jπ∗(x0) = min
π

E

[
T−1∑
t=0

c(xt, πt(xt)) + cT (xT )

]
, (2)

s.t. xt+1 = f(xt, πt(xt), εwt), (3)

where:

– the optimization is over feedback policies π := {π0, π1, . . . , πT−1} and
πt(·): X→ U specifies an action given the state, ut = πt(xt);

– Jπ∗(·) : X→ R is the cost function on executing the optimal policy π∗;
– ct(·, ·) : X× U→ R is the one-step cost function;
– cT (·) : X→ R is the terminal cost function;
– T is the horizon of the problem;
– the expectation is taken over the random variable wt.
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3 A Decoupling Principle

Now, we give a brief overview of a “decoupling principle” that allows us to
substantially reduce the complexity of the stochastic planning problem given
that the parameter ε is small enough. We only provide an outline here and the
relevant details can be found in our recent work [25]. We shall also present a
generalization to a class of multi-robot problems. Finally, we preview the results
in the rest of the paper.

3.1 Near-Optimal Decoupling in Stochastic Optimal Control

Let πt(xt) denote a control policy for the stochastic planning problem above,
not necessarily the optimal policy. Consider now the control actions of the pol-
icy when the noise to the system is uniformly zero, and let us denote the re-
sulting “nominal” trajectory and controls as xt and ut respectively, i.e., xt+1 =
f(xt,ut, 0), where ut = πt(xt). Note that this nominal system is well defined.
Further, let us assume that the closed-loop (i.e., with ut = πt(xt)), system
equations, and the feedback law are smooth enough that we can expand the
feedback law about the nominal as πt(xt) = ut + Ktδxt + Rπ

t (δxt), where
δxt = xt − xt, i.e., the perturbation from the nominal, Kt is the linear gain
obtained by the Taylor expansion about the nominal in terms of the pertur-
bation δxt, and Rπ

t (·) represents the second and higher order terms in the ex-
pansion of the feedback law about the nominal trajectory. Further we assume
that the closed-loop perturbation state can be expanded about the nominal as:
δxt = Atδxt + BtKtδxt + Rf

t (δxt) + εBtwt, where the At, Bt are the system
matrices obtained by linearizing the system state equations about the nominal
state and control, while Rf

t (·) represents the second and higher order terms in
the closed-loop dynamics in terms of the state perturbation δxt. Moreover, let
the nominal cost be given by J

π
=
∑T
t=0 ct, where ct = c(xt,ut), for t ≤ T − 1,

and cT = cT (xT ,uT ). Further, assume that the cost function is smooth enough
that it permits the expansion Jπ = J +

∑
t Ctδxt +

∑
t R

c
t(δxt) about the nom-

inal trajectory, where Ct denotes the linear term in the perturbation expansion
and Rc

t(·) denote the second and higher order terms in the same. Finally, define
the exactly linear perturbation system δx`t+1 = Atδx

`
t + BtKtδx

`
t + εBtwt. Fur-

ther, let δJπ,`1 denote the cost perturbation due to solely the linear system, i.e.,

δJπ,`1 =
∑
t Ctδx

`
t. Then, the decoupling result states the following [25]:

Theorem 1. The closed-loop cost function Jπcan be expanded as Jπ = J
π

+
δJπ,`1 +δJπ2 . Furthermore, E [Jπ] = J

π
+O(ε2), and Var[Jπ] = Var[δJπ,`1 ]+O(ε4),

where Var[δJπ,`1 ] is O(ε2).

Thus, the above result suggest that the mean value of the cost is determined
almost solely by the nominal control actions while the variance of the cost is
almost solely determined by the linear closed-loop system. Thus, the decoupling
result says that the feedback law design can be decoupled into an open-loop and
a closed-loop problem.
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Open-Loop Problem: This problem solves the deterministic/ nominal optimal
control problem:

J = min
ut

T−1∑
t=0

c(xt,ut) + cT (xT ), (4)

subject to the nominal dynamics: xt+1 = f(xt,ut).
Closed-Loop Problem: One may try to optimize the variance of the linear closed-
loop system

min
Kt

Var[δJπ,`1 ] (5)

subject to the linear dynamics δx`t+1 = Atδx
`
t + BtKtδx

`
t + εBtwt. However,

the above problem does not have a standard solution but note that we are only
interested in a good variance for the cost function and not the optimal one.
Thus, this may be accomplished by a surrogate LQR problem that provides a
good linear variance as follows.
Surrogate LQR Problem: Here, we optimize the standard LQR cost:

δJlqr = min
ut

E
wt

[
T−1∑
t=0

δxT
t Qδxt + δuT

t Rδut + δxT
TQfδxT

]
, (6)

subject to the linear dynamics δx`t+1 = Atδx
`
t + Btδut + εBtwt. In this paper,

this decoupled design shall henceforth be called the trajectory-optimized LQR
(T-LQR) design.

A Historical Context. The above decoupled design might seem like a per-
turbation feedback design outlined in classical optimal control texts such as
(Ch. 6, [6]) and we are certainly not claiming that we are the first to discover
it. However, the perturbation design was always thought to be heuristic and
its “goodness” for the stochastic optimal control problem was essentially unex-
plored. Notable as an exception is the reference [8] that considers the problem
of how good the deterministic feedback law is for the stochastic system, which is
shown to be O(ε4). However, that paper assumes the availability of the optimal
deterministic feedback law which is the solution of the deterministic Hamilton-
Jacobi-Bellman (HJB) equation (the DP equation in continuous time problems),
which, in itself, is intractable as noted by Fleming as the “practical difficulty”
in this work (pgs. 475–476 of [8]). However, MPC, by repeatedly solving the de-
terministic optimal control problem at every time step, implicitly furnishes the
deterministic feedback law, and thus, offers the solution to the practical dilemma
above. The field of MPC, of course, was developed almost two decades after
Fleming’s work, while stochastic MPC/ MPC-under-uncertainty was explored
only starting at the turn of millennium [13]. Thus, this connection was lost and
never really explored in the MPC literature. This connection is critical if we
want to tractably extend MPC to stochastic systems in a theoretically justifiable
fashion, in the sense that in much of the stochastic MPC literature, these two
aspects are at cross purposes to each other thereby preventing a satisfactory
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resolution. Thus, the MPC replanning logic is well justified theoretically, even
when applied to a stochastic system.

In fact, with a few further developments, and adaptation of Fleming’s work
to discrete time finite horizon problems, and if the linear feedback gain is mod-
ified suitably, the perturbation design also becomes O(ε4) near-optimal. Due to
paucity of space, we postpone this result to a future paper, however, for the
sake of completeness and the reader’s benefit, the result is included in the sup-
plementary document. The ultimate takeaway is that the implicit MPC feedback
law is an excellent approximation to the optimal stochastic policy, however, a T-
LQR type perturbation feedback design is much cheaper computationally, while
retaining identical near-optimality guarantees as MPC.

3.2 Multi-agent setting

Now, we generalize the above result to a class of multi-agent problems. We
consider a set of agents that are transition independent, i.e, their dynamics are
independent of each other. For simplicity, we also assume that the agents have
perfect state measurements. Let the system equations for the agents be given by:
xjt+1 = f(xjt ) + Bj

t (u
j
t + εwj

t ), where j = 1, 2, . . . ,M denotes the jth agent. (We
have assumed the control affine dynamics for simplicity). Further, let us assume
that we are interested in the minimization of the joint cost of the agents given by
J =

∑T−1
t=0 c(Xt,Ut)+Φ(XT ), where Xt = [x1

t , . . . ,x
M
t ], and Ut = [u1

t , . . . ,u
M
t ]

are the joint state and control action of the system. The objective of the multi-
agent problem is minimize the expected value of the cost E [J ] over the joint
feedback policy Ut(·). The decoupling result holds here too and thus the multi-
agent planning problem can be separated into an open and closed-loop problem.
The open-loop problem consists of optimizing the joint nominal cost of the agents
subject to the individual dynamics.
Multi-Agent Open-Loop Problem:

J = min
Ut

T−1∑
t=0

c(Xt,Ut) + Φ(XT ), (7)

subject to the nominal agent dynamics xjt+1 = f(xjt ) + Bj
tu

j
t . The closed-loop,

in general, consists of optimizing the variance of the cost J , given by Var[δJ `1 ],
where δJ `1 =

∑
t CtδX

l
t for suitably defined Ct, and δX`

t = [δx1
t , . . . , δx

M
t ],

where the perturbations δxjt of the jth agent’s state is governed by the decoupled
linear multi-agent system δxjt = Atδx

j
t + Bj

tδu
j
t + εBj

tw
j
t . This design problem

does not have a standard solution but recall that we are not really interested in
obtaining the optimal closed-loop variance, but rather a good variance. Thus, we
can instead solve a surrogate LQR problem given the cost function δJmtlqr =∑T−1
t=0

∑
j δx

j
t

T
Qjδxjt + δujt

T
Rδujt +

∑
j δx

j
T

T
Qj
fδx

j
T . Since the cost function

itself is decoupled, the surrogate LQR design degenerates into a decoupled LQR
design for each agent.
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Surrogate Decoupled LQR Problem:

δJ j = min
ujt

E
wjt

[
T−1∑
t=0

δxjt
T
Qjδxjt + δujt

T
Rδujt + δxjT

T
Qj
fδx

j
T

]
, subject to the

linear decoupled agent dynamics δxjt = Atδx
j
t + Bj

tδu
j
t + εBj

tw
j
t .

Remark 1. Note that the above decoupled feedback design results in a spatial de-
coupling between the agents in the sense that, at least in the small noise regime,
after their “initial joint plan” is made, the agents never need to communicate
with each other in order to complete their missions. However, note that the joint
plan requires communication.

3.3 Planning Complexity versus Uncertainty

The decoupling principle outlined above shows that the complexity of planning
can be drastically reduced while still retaining near optimal performance for suf-
ficiently small noise (i.e., parameter ε � 1). Nonetheless, the skeptical reader
might argue that this result holds only for low values of ε and thus, its applica-
bility for higher noise levels is suspect. Still, because the result is second order,
it hints that near optimality might be over a reasonably large ε. Naturally, the
question is ‘will it hold for medium to higher levels of noise?’ We purposely
leave the terminology of medium to high noise nebulous but what we mean shall
become clear from our experiments.

Preview of the Results. In this paper, we illustrate the degree to which the
above result still holds when we allow periodic replanning of the nominal trajec-
tory in T-LQR in an event triggered fashion, dubbed T-LQR2. Here, we shall
use MPC as a “gold standard” for comparison since the true stochastic control
problem is intractable, and owing to Fleming’s result [8], the MPC policy is
O(ε4) near-optimal when compared to the true stochastic policy. In fact, we can
make an identical strong O(ε4) claim for T-LQR as well if the linear feedback
gain is designed carefully, but owing to the paucity of space, testing with this
careful feedback design is left to a future paper. Here, we show that though
the number of replanning operations in T-LQR2 increases the planning burden
over T-LQR, it is still much reduced when compared to MPC, which replans
continually. The ability to trigger replanning means that T-LQR2 can always
produce solutions with the same quality as MPC, albeit by demanding the same
computational cost as MPC in instances when replanning is triggered. But for
moderate levels of noise, T-LQR2 can produce comparable quality output to
MPC with substantial computational savings.

In the high noise regime, replanning is more frequent but we shall see that
there is another consideration at play. Namely, that the effective planning horizon
decreases and there seems no benefit in planning all the way to the end rather
than considering only a few steps ahead, and in fact, in some cases, it can be
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harmful to consider the distant future. Noting that as the planning horizon
decreases, planning complexity decreases, this helps recover tractability even in
this regime.

Thus, while lower levels of noise render the planning problem tractable due
to the decoupling result requiring no replanning, planning under medium noise
remains tractable due to only occasional replanning, while for high levels of
noise, tractability ensues because the planning horizon should shrink as the
uncertainty increases. When noise inundates the system, long-term predictions
become so uncertain that the best-laid plans will very likely run awry, and thus, it
would be wasteful to invest significant time thinking very far ahead. To examine
this somewhat intuitive truth more quantitatively, the parameter ε will be a
knob we adjust, exploring these aspects in the subsequent empirical analysis.
We reiterate that the notion of low, medium and high noise regimes may seem
somewhat vague, however, we provide precise definitions of these regimes using
our empirical results later in this paper.

4 The Planning Algorithms

The preliminaries and the algorithms are explained below:

4.1 Deterministic Optimal Control Problem:

Given the initial state x0 of the system, the solution to the deterministic OCP is
given by (4), s.t. xt+1 = f(xt)+Btut, umin ≤ ut ≤ umax, |ut−ut−1| ≤ ∆umax.
The last two constraint model physical limits that impose upper bounds and
lower bounds on control inputs and rate of change of control inputs. The solution
to the above problem gives the open-loop control inputs u0:T−1 for the system.
For our problem, we take a quadratic cost function for state and control as
ct(xt,ut) = xT

t Wxxt + uT
t Wuut, cT (xT ) = xT

TWx
fxT , where Wx, Wx

f � 0 and
Wu � 0.

4.2 Model Predictive Control (MPC):

We employ the non-linear MPC algorithm due to the non-linearities associated
with the motion model. The MPC algorithm implemented here solves the deter-
ministic OCP (4) at every time step, applies the control inputs computed for the
first instant and uses the rest of the solution as an initial guess for the subsequent
computation. In the next step, the current state of the system is measured and
used as the initial state and the process is repeated.

4.3 Short Horizon MPC (MPC-SH):

We also implement a variant of MPC which is typically used in practical appli-
cations where it solves the OCP only for a short horizon rather than the entire
horizon at every step. At the next step, a new optimization is solved over the
shifted horizon. This implementation gives a greedy solution but is computa-
tionally easier to solve. It also has certain advantageous properties in high noise
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cases which will be discussed in the results section. We denote the short plan-
ning horizon as Hc also called as the control horizon, upto which the controls
are computed.

4.4 Trajectory Optimised Linear Quadratic Regulator (T-LQR):

As discussed in Section 3, stochastic optimal control problem can be decoupled
and solved by designing an optimal open-loop (nominal) trajectory and a decen-
tralized LQR policy to track the nominal.
Design of nominal trajectory : The nominal trajectory is generated by first find-
ing the optimal open-loop control sequence by solving the deterministic OCP (4)
for the system. Then, using the computed control inputs and the noise-free dy-
namics, the sequence of states traversed x0:T can be calculated.
Design of feedback policy: In order to design the LQR controller, the system
is first linearised about the nominal trajectory (x0:T , u0:T−1). Using the lin-
ear time-varying system, the feedback policy is determined by minimizing a
quadratic cost as shown in (6). The linear quadratic stochastic control prob-
lem (6) can be easily solved using the Riccati equation and the resulting policy
is δut = −Ltδx

`
t. The feedback gain and the Riccati equations are given by

Lt = (R + BT
t Pt+1Bt)

−1
BT
t Pt+1At and Pt = AT

t Pt+1At −AT
t Pt+1BtLt + Q,

respectively where Qf ,Q � 0,R � 0 are the weight matrices for states and
control and the terminal condition is PT = Qf .

4.5 T-LQR with Replanning (T-LQR2):

T-LQR performs well at low noise levels, but at medium and high noise levels the
system tends to deviate from the nominal. So, we define a threshold Jthresh =
J0:t−J0:t

J0:t
, where J0:t denotes the actual cost during execution till time t. The

factor Jthresh measures the percentage deviation of the online trajectory from the
nominal, and replanning is triggered for the system from the current state for the
remainder of the horizon if the deviation exceeds it. Other replanning criteria
such as state deviation can also be considered but we stick to the cost deviation
in the following 1. Note that if we set Jthresh = 0, T-LQR2 reduces to MPC. The
calculation of the new nominal trajectory and LQR gains are carried out similarly
to the explanation in Section 4.4. A generic algorithm for T-LQR and T-LQR2
is shown in Algorithm 1. The implementations of all the algorithms are available
at https://github.com/MohamedNaveed/Stochastic Optimal Control algos.

4.6 Multi-Agent versions

The MPC version of the multi-agent planning problem is reasonably straightfor-
ward except that the complexity of the planning increased (exponentially) in the
number of agents. Also, we note that the agents have to always communicate with
each other in order to do the planning. The Multi-agent Trajectory-optimised
LQR (MT-LQR) version is also relatively straightforward in that the agents plan

1 In the absence of a running cost, a criterion such as state deviation could be used.
Since we aim to optimize the cost, a criterion based on cost seems more reasonable.



Experiments with Tractable Feedback under Uncertainty 11

Algorithm 1: T-LQR2 algorithm

Input: initial state x0, final state xg, time horizon T , replan threshold Jthresh,
time step ∆t, system and environment parameters P.

1 Function Plan(x0, xg, T,uinit, uguess,P) is
2 u0:T−1 ← OCP(x0,xg, T,uinit, uguess,P)
3 xt+1 ← f(xt) + Btut; t = 0, 1, · · · , T − 1.
4 L0:T−1 ← Compute LQR Gain(x0:T−1,u0:T−1)
5 return x0:T ,u0:T−1,L0:T−1

6 end
7 Function Main() is
8 x0:T ,u0:T−1,L0:T−1 ← Plan(x0,xg, T,0,uguess,P)
9 for t← 0 to T − 1 do

10 ut ← Constrain(ut − Lt(xt − xt)) // Enforce limits

11 xt+1 ← f(xt) + Bt(ut + εwt)

12 if (J0:t − J0:t)/J0:t > Jthresh then // Replan?

13 xt+1:T ,ut+1:T−1,Lt+1:T−1 ← Plan(xt+1,xg, T−t−1,ut,uguess,P)
14 end

15 end

16 end

the nominal path jointly once, and then the agents each track their individual
paths using their decoupled feedback controllers. There is no communication
whatsoever between the agents during this operation.

The MT-LQR2 version is a little more subtle. The agents have to periodically
replan when the total cost deviates more than Jthresh away from the nominal, i.e.,
the agents do not communicate until the need to replan arises. In general, the
system would need to detect this in a distributed fashion, and trigger replanning.

5 Simulation Results:

We test the performance of the algorithms extensively in three different non-
linear models namely, the car-like robot model, car with two trailers and a
quadrotor. Due to space constraints, only the results for the car-like robot are
shown below, however, that the trends are generalizable can be seen from the
results on the other models that are shown in the supplementary material. Nu-
merical optimization is carried out using CasADi framework [1] with Ipopt [24]
NLP solver in Python. To provide a good estimate of the performance, the results
presented were averaged from 100 simulations for every value of noise considered.
Simulations were carried out in parallel across 100 cores in a cluster equipped
with Intel Xeon 2.5GHz E5-2670 v2 10-core processors.

Car-like robot model:

The car-like robot considered in our work has the motion model described by
xt+1 = xt+vt cos(θt)∆t, yt+1 = yt+vt sin(θt)∆t, θt+1 = θt+

vt
L tan(φt)∆t, φt+1 =
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φt + ωt∆t, where (xt, yt, θt, φt)
T

denote the robot’s state vector namely, robot’s

x and y position, orientation and steering angle at time t. Also, (vt, ωt)
T

is the
control vector and denotes the robot’s linear velocity and angular velocity (i.e.,
steering). Here ∆t is the discretization of the time step.

Noise characterization:

We add zero mean independent identically distributed (i.i.d), random sequences
(wt) as actuator noise to test the performance of the control scheme. The stan-
dard deviation of the noise is ε times the maximum value of the corresponding
control input, where ε is a scaling factor which is varied during testing, that
is: wt = umaxν; ν ∼ N (0, I) and the noise is added as εwt. Note that, we
enforce the constraints in the control inputs before the addition of noise, so the
controls can even take a value higher after noise is added. The analyses can be
done with process noise as well, but ε loses meaning in such a scenario and the
plots would just shift depending on the variance of wt. Since all the algorithms
use the same noise model and having been tested in an extensive range of values,
the requirement for a process noise model is not really necessary.

5.1 Single agent setting:

A car-like robot is considered and is tasked to move from a given initial pose to
a goal pose. The environment of the robot is shown in Figure 4. The experiment
is done for all the control schemes discussed and their performance for different
levels of noise are shown in Figure 2.

5.2 Multi-agent setting:

A labelled point-to-point transition problem with 3 car-like robots is considered
where each agent is assigned a fixed destination which cannot be exchanged
with another agent. The performance of the algorithms is shown in Figure 3.
The cost function involves the state and control costs for the entire system
similar to the single agent case. One major addition to the cost function is
the penalty function to avoid inter-agent collisions which is given by Ψ (i,j) =

M exp
(
−(‖pit − pjt‖22 − r2

thresh)
)

where M > 0 is a scaling factor, pit = (xit, y
j
t )

and rthresh is the desired minimum distance the agents should keep between
themselves.

5.3 Definition of noise regimes and discussion of the results:

Here we go on to define what exactly we mean by low, medium and high noise.
The low noise regime as labelled in Figure 2b and 3b is the noise level at which the
decoupled feedback law (T-LQR and MT-LQR) shows near-optimal performance
compared to MPC and does not require any replanning operations. Beyond a
limit replanning (T-LQR2 and MT-LQR2) is essential to constrain the cost from
deviating away from the optimal and we call this as the medium noise regime.
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Fig. 2: Cost evolution of the different algorithms for varying noise for a single agent. Control Horizon
(Hc) used for MPC-SH was 7. Jthresh = 2% was the replanning threshold used. J/J is the ratio of
the cost incurred during execution to the nominal cost and is used as the performance measure
throughout the paper. The nominal cost J which is calculated by solving the deterministic OCP for
the total time horizon, just acts as a normalizing factor here. The solid line in the plots indicates
the mean and the shade indicates the standard deviation of the corresponding metric.
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Fig. 3: Cost evolution of the different algorithms for varying noise for 3 agents. Control Horizon (Hc)
used for MPC-SH was 7. Jthresh = 2% was the replanning threshold used.
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under medium noises. A equivalent plot for a scenario with obstacles is shown in the supplementary
material.
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Fig. 5: We study the variation seen in cost
incurred and computation time by changing
the Jthresh and control horizon (Hc) in T-
LQR2/MT-LQR2 and MPC for a single agent
and a case with 3 agents. Figures 5a, 5b, 5c, 5d
show for a single agent and 5e, 5f, 5g, 5h for
3 agents. 5a and 5b show the performance in
terms of cost and computation time, respectively,
for the same experiment at ε = 0.1 (low noise).
Similarly, (c) and (d) show for ε = 0.7 (medium
noise). To put into context, T-LQR2/MT-LQR2
replans less as Jthresh is increased which in turn
leads to decrease in computation time. The com-
putation time also decreases with decrease in Hc.
Though MPC does not have a threshold for re-
planning, it is plotted at Jthresh = 0% since it
replans at every time step. We desire the perfor-
mance indices, cost (J/J̄) and computation time
to be small.
As seen from 5a, for a fixed Hc, the performance
of T-LQR2 is same as MPC and does not de-
grade as Jthresh is increased (except when Hc
is too small). 5b shows the computational sav-
ings, where T-LQR2 is much better than MPC.
From 5a and 5b it can be inferred that the decou-
pled approach provides good performance with
substantial savings in computation time. Sim-
ilarly, 5c shows that T-LQR2 performance is
near-optimal to MPC for small Jthresh and de-
grades as it is relaxed, which indicates the neces-
sity of replanning to maintain optimality in the
medium noise regime. The corresponding varia-
tion in computation time is shown in 5d, where
T-LQR2 does slightly better. The computational
savings can be increased further but by trading
away optimality.
Similar interpretation can be made for the multi-
agent case as seen from Figures 5e, 5f, 5g, 5h. It
can be seen that the positives of using the decou-
pled approach are amplified in the multi-agent
case.
Now, we analyse how Hc affects the performance.
Decreasing Hc leads to greedy sub-optimal so-
lutions. Though not clearly seen in single agent
case, the decrease in performance is seen in the
multi-agent case (Fig. 5e). But in high noises,
decreasing the horizon does not lead to decrease
in solution quality or sometimes even produces
better solutions as seen in 5g.
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Figure 2c and 3c show the significant difference in the number of replanning
operations, which determines the computational effort, taken by the decoupled
approach compared to MPC. The significant difference in computational time
between MPC and T-LQR2 can be seen from Figure 5b. The trend is similar
in the multi-agent case which again shows that the decoupling feedback policy
is able to give computationally efficient solutions which are near-optimal in low
noise cases by avoiding frequent replanning.

In the high noise regime, T-LQR2, MT-LQR2 and even MPC-SH perform
on a par with MPC as seen from Figures 2a and 3a meaning, planning too far
ahead is not beneficial at high noise levels. It can also be seen in Figure 5g that
the performance for MPC as well as MT-LQR2 is best at Hc = 20. Planning
for a shorter horizon also eases the computation burden as seen in Figure 5h. It
can also be seen in Figure 3a where MPC-SH with Hc = 7 outperforms MPC
with Hc = 35 at high noise levels which again show that the effective planning
horizon decreases at the high noise regime.

6 Conclusions and Implications

In this paper, we have considered a class of stochastic motion planning problems
for robotic systems over a wide range of uncertainty conditions parameterized
in terms of a noise parameter ε. We have shown extensive empirical evidence
that a simple generalization of a recently developed “decoupling principle” can
lead to tractable planning without sacrificing performance for a wide range of
noise levels. Future work will seek to treat the medium and high noise systems,
considered here, analytically, and look to establish the near-optimality of the
replanning scheme. Further, we shall consider the question of “when and how to
replan” in a distributed fashion in the multi-agent setting, as well as relax the
requirement of perfect state observation. It is also conjectured that by designing
the linear feedback in a suitable fashion, the decoupling result can be made O(ε4)
near-optimal, thus making the algorithm theoretically as good as MPC owing
to Fleming’s result [8]. Further, an important limitation of the method is the
smoothness of the nominal trajectory such that suitable Taylor expansions are
possible, this breaks down when trajectories are non-smooth such as in hybrid
systems like legged robots, or maneuvers have kinks for car-like robots such as
in a tight parking application. It remains to be seen as to if, and how, one may
extend the decoupling to such applications.
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SUPPLEMENTARY MATERIAL

In this document, we provide details of the decoupling result, a rudimentary
analysis of the high noise regime, and more empirical results on different robotic
models from that presented in the main paper.

7 A NEAR OPTIMAL DECOUPLING PRINCIPLE

We discuss in detail the decoupling principle described in Section 3.
We make the following assumptions for the simplicity of illustration. We

assume that the dynamics given in (1) can be written in the form

xt+1 = f(xt) +Btut + εwt, (8)

where ε < 1 is a small parameter. We also assume that the instantaneous cost
c(·, ·) has the following simple form,

c(x, u) = l(x) +
1

2
u′Ru. (9)

We emphasis that these assumptions, quadratic control cost and affine in control
dynamics, are purely for the simplicity of treatment. These assumptions can be
omitted at the cost of increased notational complexity.
In the following subsections, we first characterize the performance of any feed-
back policy. Then, we use this characterization to provide O(ε2) and O(ε4) near-
optimality results in the subsequent subsections.

7.1 Characterizing the Performance of a Feedback Policy

Consider a noiseless version of the system dynamics given by (8). We denote
the “nominal” state trajectory as x̄t and the “nominal” control as ūt where
ut = πt(xt), where π = (πt)

T−1
t=1 is a given control policy. The resulting dynamics

without noise is given by x̄t+1 = f(x̄t) +Btūt.
Assuming that f(·) and πt(·) are sufficiently smooth, we can linearize the

dynamics about the nominal trajectory. Denoting δxt = xt − x̄t, δut = ut − ūt,
we can express,

δxt+1 = Atδxt +Btδut + St(δxt) + εwt, (10)

δut = Ktδxt + S̃t(δxt), (11)

where At = ∂f
∂x |x̄t , Kt = ∂πt

∂x |x̄t , and St(·), S̃t(·) are second and higher order
terms in the respective expansions. Similarly, we can linearize the instantaneous
cost c(xt, ut) about the nominal values (x̄t, ūt) as,

c(xt, ut) = l(x̄t) + Ltδxt +Ht(δxt)+

1

2
ū′tRūt + δu′tRūt + δu′tRδut, (12)

cT (xT ) = cT (x̄T ) + CT δxT +HT (δxT ), (13)
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where Lt = ∂l
∂x |x̄t , CT = ∂cT

∂x |x̄t , and Ht(·) and HT (·) are second and higher
order terms in the respective expansions.

Using (10) and (11), we can write the closed loop dynamics of the trajectory
(δxt)

T
t=1 as,

δxt+1 = (At +BtKt)︸ ︷︷ ︸
Āt

δxt + {BtS̃t(δxt) + St(δxt)}︸ ︷︷ ︸
S̄t(δxt)

+εwt, (14)

where Āt represents the linear part of the closed loop systems and the term
S̄t(.) represents the second and higher order terms in the closed loop system.
Similarly, the closed loop incremental cost given in (12) can be expressed as

c(xt, ut) = {l(x̄t) +
1

2
ū′tRūt}︸ ︷︷ ︸

c̄t

+ [Lt + ū′tRKt]︸ ︷︷ ︸
C̄t

δxt

+ (Ktδxt + S̃t(δxt))
′R(Ktδxt + S̃t(δxt))︸ ︷︷ ︸

H̄t(δxt)

. (15)

Therefore, the cumulative cost of any given closed loop trajectory (xt, ut)
T
t=1

can be expressed as,

Jπ =

T−1∑
t=1

c(xt, ut = πt(xt)) + cT (xT )

=

T∑
t=1

c̄t +

T∑
t=1

C̄tδxt +

T∑
t=1

H̄t(δxt), (16)

where c̄T = cT (x̄T ), C̄T = CT .

We first show the following critical result.

Lemma 1. Given any sample path, the state perturbation equation

δxt+1 = Ātδxt + S̄t(δxt) + εwt

given in (14) can be equivalently characterized as

δxt = δxlt + et, δx
l
t+1 = Ātδx

l
t + εwt (17)

where et is an O(ε2) function that depends on the entire noise history {w0, w1, · · ·wt}
and δxlt evolves according to the linear closed loop system. Furthermore, et =

e
(2)
t +O(ε3), where e

(2)
t = Āt−1e

(2)
t−1 + δxl

′

t S̄
(2)
t−1δx

l
t, e

(2)
0 = 0, and S̄

(2)
t represents

the Hessian corresponding to the Taylor series expansion of the function S̄t(.).

Proof. We only consider the case when the state xt is scalar, the vector case is
straightforward to derive and only requires a more complex notation.
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We proceed by induction. The first general instance of the recursion occurs at
t = 3. It can be shown that:

δx3 = (Ā2Ā1(εw0) + Ā2(εw1) + εw2)︸ ︷︷ ︸
δxl3

+

{Ā2S̄1(εw0) + S̄2(Ā1(εw0) + εw1 + S̄1(εw0))}︸ ︷︷ ︸
e3

. (18)

Noting that S̄1(.) and S̄2(.) are second and higher order terms, it follows that
e3 is O(ε2).
Suppose now that δxt = δxlt + et where et is O(ε2). Then:

δxt+1 = Āt+1(δxlt + et) + εwt + S̄t+1(δxt),

= (Āt+1δx
l
t + εwt)︸ ︷︷ ︸

δxlt+1

+ {Āt+1et + S̄t+1(δxt)}︸ ︷︷ ︸
et+1

. (19)

Noting that S̄t is O(ε2) and that et is O(ε2) by assumption, the result follows
that et+1 is O(ε2).
Now, let us take a closer look at the term et and again proceed by induction. It

is clear that e1 = e
(2)
1 = 0. Next, it can be seen that e2 = Ā1e

(2)
1 + S

(2)
1 (δxl1)2 +

O(ε3) = S̄
(2)
1 (εω0)2 +O(ε3), which shows the recursion is valid for t = 2 given it

is so for t = 1.
Suppose that it is true for t. Then:

δxt+1 = Ātδxt + St(δxt) + εωt,

= Āt(δx
l
t + et) + St(δx

l
t + et) + εωt,

= (Ātδx
l
t + εωt)︸ ︷︷ ︸

δxlt+!

+ Āte
(2)
t + S

(2)
t (δxlt)

2︸ ︷︷ ︸
e
(2)
t+1

+O(ε3), (20)

where the last line follows because et = e
(2)
t + O(ε3), and S̄t(.) contains second

and higher order terms only. This completes the induction and the proof.

Next, we have the following result for the expansion of the cost to go function
Jπ.

Lemma 2. Given any sample path, the cost-to-go under a policy can be expanded
as:

Jπ =
∑
t

c̄t︸ ︷︷ ︸
J̄π

+
∑
t

C̄tδx
l
t︸ ︷︷ ︸

δJπ1

+
∑
t

δxl
′

t H̄
(2)
t δxlt + C̄te

(2)
t︸ ︷︷ ︸

δJπ2

+O(ε3), (21)

where H̄
(2)
t denotes the second order coefficient of the Taylor expansion of H̄t(.).
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Proof. We have that:

Jπ =
∑
t

c̄t +
∑
t

C̄t(δx
l
t + et) +

∑
t

H̄t(δx
l
t + et),

=
∑
t

c̄t +
∑
t

C̄tδx
l
t +
∑
t

δxl
′

t H̄
(2)
t δxlt + C̄te

(2)
t +O(ε3),

where the last line of the equation above follows from an application of Lemma
1.

Now, we show the following important result.

Proposition 1.

J̃π = E[Jπ] = J̄π +O(ε2),

Var(Jπ) = Var(δJπ1 )︸ ︷︷ ︸
O(ε2)

+O(ε4).

Proof. It is useful to first write the sample path cost in a slightly different fashion.
It can be seen that given sufficient smoothness of the requisite functions, the cost
of any sample path can be expanded as follows:

Jπ = J̄π + εJπ1 + ε2Jπ2 + ε3Jπ3 + ε4Jπ4 +R,

where:

Jπ1 = J 1ω̄,

Jπ2 = ω̄′J 2ω̄,

and so on for Jπ3 , J
π
4 respectively, where J i are constant matrices (tensors) of

suitable dimensions, and ω̄ = [ω1, · · ·ωN ]. Further, the remainder function R is
an o(ε4) function in the sense that ε−4R → 0 as ε→ 0.
Further, due to the whiteness of the noise sequences ω̄, it follows that E[Jπ1 ] =
0, and E[Jπ3 ] = 0, since these terms are made of odd valued products of the
noise sequences, while E[Jπ2 ], E[Jπ4 ] are both finite owing to the finiteness of the
moments of the noise values and the initial condition. Further limε→0ε

−4E[R] =
E[limε ε

−4R] = 0, i.e., E[R] is o(ε4).
Therefore, using Lemma 2, and taking expectations on both sides, we obtain:

E[Jπ] = J̄π + E[εJπ1 ] + E[ε2Jπ2 ] +O(ε4) = J̄π +O(ε2),

since E[Jπ1 ] = 0, and E[ε2Jπ,22 ] is O(ε2) due to the fact that E[Jπ2 ] <∞.
Next, using Lemma 2, and taking the variances on both sides, and doing some
work, we have:

V ar[Jπ] = V ar[εJπ1 ] + E[εJπ1 ε
2Jπ2 ] + V ar[ε2Jπ2 ] + o(ε4)

= V ar[δJπ1 ] +O(ε4), (22)

where the second equality follows from the fact that E[εJπ1 ε
2Jπ2 ] = 0 (proved in

the appendix), and V ar[Jπ2 ] <∞. This completes the proof of the result.
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A further consequence of the result above is the following. Suppose that given
a policy πt(.), we only consider the linear part, i.e., the linear approximation
πlt(xt) = ūt + Ktδxt. However, according to Lemma 2, the ε2 terms in the
expansion of the cost of any sample path solely result from the linear closed
loop system. Therefore, it follows that the sample path cost under the full policy
πt(.) and the linear policy πlt(.) agree up to the ε2 term. Therefore, it follows

that E[Jπ]− E[Jπ
l

] = O(ε4)! We summarize this result in the following:

Proposition 2. Let πt(.) be any given feedback policy. Let πlt(xt) = ūt +Ktδxt
be the linear approximation of the policy. Then, the error in the expected cost to

go under the two policies, E[Jπ]− E[Jπ
l

] = O(ε4).

The above two results in Propositions 1 and 2 will form the basis of an O(ε2)
and an O(ε4) decoupling result in the following subsections.

7.2 An O(ε2) Near-Optimal Decoupled Approach for Closed Loop
Control

The following observations can now be made from Proposition 1.

Remark 2 (Expected cost-to-go). Recall that ut = πt(xt) = ūt+Ktδxt+ S̃t(δxt).
However, note that due to Proposition 1, the expected cost-to-go, J̃π, is deter-
mined almost solely (within O(ε2)) by the nominal control action sequence ūt.
In other words, the linear and higher order feedback terms have only O(ε2) effect
on the expected cost-to-go function.

Remark 3 (Variance of cost-to-go). Given the nominal control action ūt, the
variance of the cost-to-go, which is O(ε2), is determined overwhelmingly (within
O(ε4)) by the linear feedback term Ktδxt, i.e., by the variance of the linear
perturbation of the cost-to-go, δJπ1 , under the linear closed loop system δxlt+1 =
(At +BtKt)δx

l
t + εwt.

Proposition 1 and the remarks above suggest that an open loop control super
imposed with a closed loop control for the perturbed linear system may be
approximately optimal. We delineate this idea below.

Open Loop Design. First, we design an optimal (open loop) control sequence
ū∗t for the noiseless system. More precisely,

(ū∗t )
T−1
t=1 = arg min

(ũt)
T−1
t=1

T−1∑
t=1

c(x̄t, ũt) + cT (x̄T ), (23)

x̄t+1 = f(x̄t) +Btũt.

Closed Loop Design. We find the optimal feedback gain K∗t such that the
variance of the linear closed loop system around the nominal path, (x̄t, ū

∗
t ),
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from the open loop design above, is minimized.

(K∗t )T−1
t=1 = arg min

(Kt)
T−1
t=1

Var(δJπ1 ),

δJπ1 =

T∑
t=1

C̄tx
l
t,

δxlt+1 = (At +BtKt)δx
l
t + εwt. (24)

We now characterize the approximate closed loop policy below.

Proposition 3. Construct a closed loop policy

π∗t (xt) = ū∗t +K∗t δxt, (25)

where ū∗t is the solution of the open loop problem (23), and K∗t is the solution
of the closed loop problem (24). Let πo be the optimal closed loop policy. Then,

|J̃π∗ − J̃πo | = O(ε2).

Furthermore, among all policies with nominal control action ū∗t , the variance of
the cost-to-go under policy π∗t , is within O(ε4) of the variance of the policy with
the minimum variance.

Proof. We have

J̃π
∗ − J̃πo = J̃π

∗ − J̄π∗ + J̄π
∗ − J̃πo

≤ J̃π∗ − J̄π∗ + J̄π
o − J̃πo

The inequality above is due the fact that J̄π
∗ ≤ J̄π

o

, by definition of π∗. Now,
using Proposition 1, we have that |J̃π∗ − J̄π∗ | = O(ε2), and |J̃πo − J̄πo | = O(ε2).
Also, by definition, we have J̃π

o ≤ J̃π∗ . Then, from the above inequality, we get

|J̃π∗ − J̃πo | ≤ |J̃π∗ − J̄π∗ |+ |J̄πo − J̃πo | = O(ε2)

A similar argument holds for the variance as well.

Unfortunately, there is no standard solution to the closed loop problem (24)
due to the non additive nature of the cost function Var(δJπ1 ). Therefore, we
solve a standard LQR problem as a surrogate, and the effect is again one of
reducing the variance of the cost-to-go by reducing the variance of the closed
loop trajectories.

Approximate Closed Loop Problem. We solve the following LQR problem for
suitably defined cost function weighting factors Qt, Rt:

min
(δut)Tt=1

E[

T−1∑
t=1

δx′tQtδxt + δu′tRtδut + δx′TQT δxt],

δxt+1 = Atδxt +Btδut + εwt. (26)

The solution to the above problem furnishes us a feedback gan K̂∗t which we can
use in the place of the true variance minimizing gain K∗t .
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Remark 4. Proposition 1 states that the expected cost-to-go of the problem
is dominated by the nominal cost-to-go. Therefore, even an open loop policy
consisting of simply the nominal control action is within O(ε2) of the optimal
expected cost-to-go. However, the plan with the optimal feedback gain K∗t is
strictly better than the open loop plan in that it has a lower variance in terms of
the cost to go. Furthermore, solving the approximate closed loop problem using
the surrogate LQR problem, we can expect a lower variance of the cost-to-go
function as well.

7.3 An O(ε4) Near-Optimal Decoupled Approach for Closed Loop
Control

In order to derive the results in this section, we need some additional structure
on the dynamics. In essence, the results in this section require that the time
discretization of the dynamics be small enough. Thus, let the dynamics be given
by:

xt = xt−1 + f̄(xt−1)∆t+ ḡ(xt−1)ut∆t+ εωt
√
∆t, (27)

where ωt is a white noise sequence, and the sampling time ∆t is small enough
that O(∆tα) is negligible for α > 1. The noise term above is a Brownian motion,
and hence the

√
∆t factor. Further, the incremental cost function c(x, u) is given

as: c(x, u) = l̄(x)∆t+ 1
2u
′R̄u∆t. The main reason to use the above assumptions

is to simplify the Dynamic Programming (DP) equation governing the optimal
cost-to-go function of the system. The DP equation for the above system is given
by:

Jt(x) = min
ut
{c(x, u) + E[Jt+1(x′)]}, (28)

where x′ = x+ f̄(x)∆t+ ḡ(x)ut∆t+ εωt
√
∆t and Jt(x) denotes the cost-to-go of

the system given that it is at state x at time t. The above equation is marched
back in time with terminal condition JT (x) = cT (x), and cT (.) is the terminal
cost function. Let ut(.) denote the corresponding optimal policy.Then, it follows
that the optimal control ut satisfies (since the argument to be minimized is
quadratic in ut)

ut = −R−1ḡ′Jxt+1, (29)

where Jxt+1 = ∂Jt+1

∂x . Further, let udt (.) be the optimal control policy for the
deterministic system, i.e., Eq. 27 with ε = 0. The optimal cost-to-go of the
deterministic system, φt(.) satisfies the deterministic DP equation:

φt(x) = min
u

[c(x, u) + φt+1(x′)], (30)

where x′ = x + f̄(x′)∆t + ḡ(x′)u∆t. Then, identical to the stochastic case,
udt = R−1ḡ′φxt . Next, let ϕt(.) denote the cost-to-go of the deterministic policy
when applied to the stochastic system, i.e., udt applied to Eq. 27 with ε > 0. The
cost-to-go ϕt(.) satisfies the policy evaluation equation:

ϕt(x) = c(x, udt (x)) + E[ϕt+1(x′)], (31)
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where now x′ = x+f̄(x)∆t+ḡ(x)udt (x)∆t+εωt
√
∆t. Note the difference between

the equations 30 and 31. Then, we have the following important result.

Proposition 4. The difference between the cost function of the optimal stochas-
tic policy, Jt, and the cost function of the “deterministic policy applied to the
stochastic system”, ϕt, is O(ε4), i.e. |Jt(x)− ϕt(x)| = O(ε4) for all (t, x).

The above result was originally proved in a seminal paper [8] for continuous
time, first passage problems. We have provided a simple derivation of the result,
in the context of a discrete time finite horizon problem below.

Proof. Using Proposition 1, we know that any cost function, and hence, the
optimal cost-to-go function can be expanded as:

Jt(x) = J0
t + ε2J1

t + ε4J2
t + · · · (32)

Thus, substituting the minimizing control in Eq. 29 into the dynamic program-
ming Eq. 46 implies:

Jt(x) = l̄(x)∆t+
1

2
r(
−ḡ
r

)2(Jxt+1)2∆t+ Jxt+1f̄(x)∆t

+ḡ(
−ḡ
r

)(Jxt+1)2∆t+
ε2

2
Jxxt+1∆t+ Jt+1(x), (33)

where Jxt , and Jxxt denote the first and second derivatives of the cost-to go
function. Substituting Eq. 32 into eq. 33 we obtain that:

(J0
t + ε2J1

t + ε4J2
t + · · · ) = l̄(x)∆t+

1

2

ḡ2

r
(J0,x
t+1 + ε2J1,x

t+1 + · · · )2∆t

+(J0,x
t+1 + ε2J1,x

t+1 + · · · )f̄(x)∆t

− ḡ
2

r
(J0,x
t+1 + ε2J1,x

t+1 + · · · )2∆t

+
ε2

2
(J0,x
t+1 + ε2J1,x

t+1 + · · · )∆t+ Jt+1(x). (34)

Now, we equate the ε0, ε2 terms on both sides to obtain perturbation equations
for the cost functions J0

t , J
1
t , J

2
t · · · .

First, let us consider the ε0 term. Utilizing Eq. 34 above, we obtain:

J0
t = l̄∆t+

1

2

ḡ2

r
(J0,x
t+1)2∆t+ (f̄ + ḡ

−ḡ
r
J0,x
t )︸ ︷︷ ︸

f̄0

J0,x
t ∆t+ J0

t+1, (35)

with the terminal condition J0
T = cT , and where we have dropped the explicit

reference to the argument of the functions x for convenience.
Similarly, one obtains by equating the O(ε2) terms in Eq. 34 that:

J1
t =

1

2

ḡ2

r
(2J0,x

t+1J
1,x
t+1)∆t+ J1,x

t+1f̄∆t−
ḡ2

r
(2J0,x

t+1J
1,x
t+1)∆t+

1

2
J0,xx
t+1 ∆t+ J1

t+1,
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which after regrouping the terms yields:

J1
t = (f̄ + ḡ

−ḡ
r
J0,x
t+1)J1,x

t+1︸ ︷︷ ︸
=f̄0

∆t+
1

2
J0,xx
t+1 ∆t+ J1

t+1, (36)

with terminal boundary condition J1
T = 0. Note the perturbation structure of

Eqs. 35 and 36, J0
t can be solved without knowledge of J1

t , J
2
t etc, while J1

t

requires knowledge only of J0
t , and so on. In other words, the equations can be

solved sequentially rather than simultaneously.

Now, let us consider the deterministic policy udt (.) that is a result of solving
the deterministic DP equation:

φt(x) = min
u

[c(x, u) + φt+1(x′)], (37)

where x′ = x + f̄∆t + ḡu∆t, i.e., the deterministic system obtained by setting
ε = 0 in Eq. 27, and φt represents the optimal cost-to-go of the deterministic
system. Analogous to the stochastic case, udt = −ḡ

r φ
x
t . Next, let ϕt denote the

cost-to-go of the deterministic policy udt (.) when applied to the stochastic system,
i.e., Eq. 27 with ε > 0. Then, the cost-to-go of the deterministic policy, when
applied to the stochastic system, satisfies:

ϕt = c(x, udt (x)) + E[ϕt+1(x′)], (38)

where x′ = f̄∆t+ ḡudt∆t+ε
√
∆tωt. Substituting udt (.) = −ḡ

r φ
x
t into the equation

above implies that:

ϕt = ϕ0
t + ε2ϕ1

t + ε4ϕ2
t + · · ·

= l̄∆t+
1

2

ḡ2

r
(φxt+1)2∆t+ (ϕ0,x

t+1 + ε2ϕ1,x
t+1 + · · · )f̄∆t

+ḡ
−ḡ
r
φxt+1(ϕ0,x

t+1 + ε2ϕ1,x
t+1 + · · · )∆t

+
ε2

2
(ϕ0,xx
t+1 + ε2ϕ1,xx

t+1 + · · · )∆t

+(ϕ0
t+1 + ε2ϕ1

t+1 + · · · ). (39)

As before, if we gather the terms for ε0, ε2 etc. on both sides of the above
equation, we shall get the equations governing ϕ0

t , ϕ
1
t etc. First, looking at the

ε0 term in Eq. 36, we obtain:

ϕ0
t = l̄∆t+

1

2

ḡ2

r
(φxt+1)2∆t+ (f̄ + ḡ

−ḡ
r
φxt+1)ϕ0,x

t+1∆t+ ϕ0
t+1, (40)

with the terminal boundary condition ϕ0
T = cT . However, the deterministic cost-

to-go function also satisfies:

φt = l̄∆t+
1

2

ḡ2

r
(φxt+1)2∆t+ (f̄ + ḡ

−ḡ
r
φxt+1)φxt+1∆t+ φt+1, (41)
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with terminal boundary condition φT = cT . Comparing Eqs. 40 and 41, it fol-
lows that φt = ϕ0

t for all t. Further, comparing them to Eq. 35, it follows that
ϕ0
t = J0

t , for all t. Also, note that the closed loop system above, f̄+ḡ−ḡr φ
x
t+1 = f̄0

(see Eq. 35 and 36).

Next let us consider the ε2 terms in Eq. 39. We obtain:

ϕ1
t = f̄ϕ1,x

t+1∆t+ ḡ
−ḡ
r
φxt+1ϕ

1,x
t+1∆t+

1

2
ϕ0,xx
t+1 + ϕ1

t+1.

Noting that φt = ϕ0
t , implies that (after collecting terms):

ϕ1
t = f̄0ϕ1,x

t+1∆t+
1

2
ϕ0,xx
t+1 ∆t+ ϕ1

t+1, (42)

with terminal boundary condition ϕ1
N = 0. Again, comparing Eq. 42 to Eq. 36,

and noting that ϕ0
t = J0

t , it follows that ϕ1
t = J1

t , for all t. This completes the
proof of the result.

Given some initial condition x0, consider a linear truncation of the optimal
deterministic policy, i.e., let ult(.) = ūt + Ktδxt, where the deterministic policy
is given by udt = ūt +Ktδxt +St(δxt), where St(.) denote the second and higher
order terms in the optimal deterministic feedback policy. Using Proposition 2,
it follows that the cost of the linear policy, say ϕlt(.), is within O(ε4) of the cost
of the deterministic policy udt (.), when applied to the stochastic system in Eq.
27. However, the result in Proposition 4 shows that the cost of the deterministic
policy is within O(ε4) of the optimal stochastic policy. Taken together, this
implies that the cost of the linear deterministic policy is within O(ε4) of the
optimal stochastic policy. This may be summarized in the following result.

Proposition 5. Let the optimal cost function under the true stochastic policy be
given Jt(.) Let the optimal deterministic policy be given by udt (xt) = ūt+Ktδxt+
St(δxt), and the linear approximation to the policy be ult(xt) = ūt +Ktδxt, and
let the cost of the linear policy be given by ϕlt(x). Then |Jt(x)− ϕlt(x)| = O(ε4)
for all (t, x).

Now, it remains to be seen how to design the ūt and the linear feedback term
Kt. The open loop optimal control sequence ūt is found identically to the pre-
vious section. However, the linear feedback gain Kt is calculated in a slightly
different fashion and may be done as shown in the following result. In the fol-
lowing, F(x) = x+ f̄(x)∆t, G(x) = ḡ(x)∆t, At = ∂F

∂x |x̄t + ∂Gūt
∂x |x̄t , Bt = G(x̄t),

Lt = ∂l
∂x |′x̄t and Ltt = ∇2

xxl|x̄t . Let φt(xt) denote the optimal cost-to-go of the
detrministic problem, i.e., Eq 27 with ε = 0.

Proposition 6. Decoupled Design. Given an optimal nominal trajectory (x̄t, ūt),
the backward evolutions of the first and second derivatives, Gt = ∂φt

∂x |′x̄t and
Pt = ∇2

xxφt|x̄t , of the optimal cost-to-go function φt(xt), initiated with the ter-

minal boundary conditions GN = ∂cN (xN )
∂xN

|′x̄N and PN = ∇2
xcN |x̄N respectively,
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are as follows:

Gt = Lt +Gt+1At, (43)

Pt = Ltt +A′tPt+1At −K ′tStKt +Gt+1 ⊗ R̃t,xx, (44)

for t = {0, 1, ..., N − 1}, where, St = (Rt +B′tPt+1Bt),Kt = −S−1
t (B′tPt+1At +

(Gt+1 ⊗ R̃txu)′), R̃t,xx = ∇2
xxF(xt)|x̄t + ∇2

xxG(xt)|x̄t,ūt , R̃t,xu = ∇2
xu(F(xt) +

G(xt)ut)|x̄t,ūt where ∇2
xx represents the Hessian of a vector-valued function w.r.t

x and ⊗ denotes the tensor product.

Proof. Consider the Dynamic Programming equation for the deterministic cost-
to-go function:

φt(xt) = min
ut

Qt(xt, ut) = min
ut
{ct(xt, ut) + φt+1(xt+1)}

By Taylor’s expansion about the nominal state at time t+ 1,

φt+1(xt+1) =φt+1(x̄t+1) +Gt+1δxt+1

+
1

2
δxt+1

′Pt+1δxt+1 + qt+1(δxt+1).

Substituting the linearization of the dynamics, δxt+1 = Atδxt+Btδut+rt(δxt, δut)
in the above expansion,

φt+1(xt+1) = φt+1(x̄t+1) +Gt+1(Atδxt +Btδut + rt(δxt

, δut)) + (Atδxt +Btδut + rt(δxt, δut))
′Pt+1(Atδxt

+Btδut + rt(δxt, δut)) + qt+1(δxt+1).

Similarly, expand the incremental cost at time t about the nominal state,

ct(xt, ut) = l̄t + Ltδxt +
1

2
δxt
′Lttδxt +

1

2
δut
′Rtūt

+
1

2
ū′tRtδut +

1

2
δut
′Rtδut +

1

2
ū′tRtūt + st(δxt).

Qt(xt, ut) =

φ̄t(x̄t,ūt)︷ ︸︸ ︷
[l̄t +

1

2
ūᵀtRtūt + φt+1(x̄t+1)]

+ δut
′(B′t

Pt+1

2
Bt +

1

2
Rt)δut + δut

′(B′t
Pt+1

2
Atδxt

+
1

2
Rtūt +B′t

Pt+1

2
rt) + (δxt

′A′t
Pt+1

2
Bt +

1

2
ūtRt

+ r′t
Pt+1

2
Bt +Gt+1Bt)δut + δxt

′A′t
Pt+1

2
Atδxt

+ δxt
′Pt+1

2
A′trt + (r′t

Pt+1

2
At +Gt+1At)δxt

+ r′t
Pt+1

2
rt +Gt+1rt + qt ≡ φ̄t(x̄t, ūt) +Ht(δxt, δut).
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Now,min
ut

Qt(xt, ut) = min
ūt

φ̄t(x̄t, ūt) +min
δut

Ht(δxt, δut)

First order optimality: Along the optimal nominal control sequence ūt, it
follows from the minimum principle that

∂ct(xt, ut)

∂ut
+
∂g(xt)

∂ut

′
∂φt+1(xt+1)

∂xt+1
= 0

⇒ Rtūt +B′tG
′
t+1 = 0 (45)

By setting ∂Ht(δxt,δut)
∂δut

= 0, we get:

δu∗t = −S−1
t (Rtūt +B′tG

′
t+1)− S−1

t (B′tPt+1At+

(Gt ⊗ R̃t,xu)′)δxt − S−1
t (B′tPt+1rt)

= −S−1
t (B′tPt+1At + (Gt+1 ⊗ R̃t,xu)′)︸ ︷︷ ︸

Kt

δxt

+ S−1
t (−B′tPt+1rt)︸ ︷︷ ︸

pt

where, St = Rt +B′tPt+1Bt.

⇒ δut = Ktδxt + pt.

Substituting it in the expansion of Jt and regrouping the terms based on the
order of δxt (till 2nd order), we obtain:

φt(xt) = φ̄t(x̄t) + (Lt + (Rtūt +B′tG
′
t+1)Kt +Gt+1At)δxt

+
1

2
δxt
′(Ltt +A′tPt+1At −K ′tStKt +Gt+1 ⊗ R̃t,xx)δxt.

Expanding the LHS about the optimal nominal state result in the recursive
equations in Proposition 6.

7.4 Summary of the Decoupling Results and Implications

The previous two subsections showed that the feedback parameterization can be
written as: πt(xt) = ūt +Ktδxt, where δxt = xt− x̄t denotes the state deviation
from the nominal. Further, it was shown that the optimal open loop sequence ūt
is independent of the feedback gain, while the feedback gain Kt can be designed
based on the optimal ūt. Hence, the term decoupling, in the sense that the search
for the optimal parameter (ū∗t ,K

∗
t ) need not be done jointly.

Moreover, it was shown that depending on how one designed the gain Kt, we can
obtain either O(ε2) (Proposition 3), or O(ε4) (Propositions 6), near-optimality
to the true stochastic policy.
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8 Analysis of the High Noise Regime

In this section, we perform a rudimentary analysis of the high noise regime. The
medium noise case is more difficult to analyze and is left for future work, along
with a more sophisticated treatment of the high noise regime.
First, recall the Dynamic Programming (DP) equation for the backward pass to
determine the optimal time varying feedback policy:

Jt(xt) = min
ut

{
c(xt,ut) + E [Jt+1(xt+1)]

}
, (46)

where Jt(xt) denotes the cost-to-go at time t given the state is xt, with the
terminal condition JT (·) = cT (·) where cT is the terminal cost function, and the
next state xt+1 = f(xt) + Bt(ut + εwt). Suppose now that the noise is so high
that xt+1 ≈ Btεwt, i.e., the dynamics are completely swamped by the noise.
Consider now the expectation E [cT (xt+1)] given some control ut was taken
at state xt. Since xt+1 is determined entirely by the noise, E [cT (xt+1)] =∫
cT (Btεwt)p(wt)dwt = cT , where cT is a constant regardless of the previous

state and control pair xt,ut. This observation holds regardless of the function
cT (·) and the time t.
Next, consider the DP iteration at time T − 1. Via the argument above, it
follows that E [JT (xT )] = E [cT (xT )] = cT , regardless of the state control
pair xT−1,uT−1 at the (T − 1)th step, and thus, the minimization reduces
to JT−1(xT−1) = minu {c(xT−1,u) + cT }, and thus, the minimizer is just the
greedy action u∗T−1 = arg minu c(xT−1,u) due to the constant bias cT . The same
argument holds for any t since, although there might be a different Jt(·) at every
time t, the minimizer is still the greedy action that minimizes c(xt,u) as the
cost-to-go from the next state is averaged out to simply some J̄t+1.

9 Additional Simulation Results:

In addition to the simulations performed on the car-like robot shown in the main
article, experiments are performed on a car with trailers and a quadrotor whose
results are shown in Figure 6 and 7 respectively. We also show a scenario on a
car-like robot in an environment with obstacles to illustrate that the decoupling
approach can handle such cases. The parameters used in the simulations are given
in Table 1 and 2. As seen in car-like robot, the performance of T-LQR2 is close
to MPC for a wide range of noise levels. It is also evident from the replanning
operations plots in Figure 6c and 7c that T-LQR2 is computationally efficient
when compared to MPC. MPC-SH also exhibits the similar trends as shown in
the main article.
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9.1 Car-like robot with trailers:

Having trailers in a car-like robot makes it more complex by increasing the state
dimension of it by the number of trailers attached. Here we consider 2 trailers
whose heading angles are given by,

θ1(t+ 1) = θ1(t) +
vt
L
sin(θ(t)− θ1(t))∆t,

θ2(t+ 1) = θ2(t) +
vt
L
cos(θ(t)− θ1(t))sin(θ1(t)− θ2(t))∆t.

The performance is shown in Figure 6. As seen in the car-like robot, T-LQR is
near-optimal in the low noise regime, while T-LQR2 performs similar to MPC
in the medium and high noise regime. In the high noise regime, as seen earlier,
MPC-SH achieves similar performance to MPC and T-LQR2 despite planning
only for a short horizon.
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Fig. 6: Cost evolution of the different algorithms for a car with 2 trailer system.

9.2 Quadrotor:

To evaluate in a 3D setting, we consider a quadrotor whose 12D state vector com-
prises of its position, orientation, linear and angular velocities - (xt, θt,vt, ωt).
The model is described by

ẋt = vt, v̇t = g +
1

m
RθtFt,

θ̇t = W−1
θ ωt, ω̇t = I−1τt

where, Wθ is the transformation from the inertial to body frame and I is the
inertia matrix. The model has thrust (Ft) and torques (τt) in its body fixed
frame as the 4 control inputs. The results are shown in Figure 7. Unlike a mobile
robot which is stable even in high noise cases, a quadrotor is susceptible to
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failure or reach states from which no form of control can help it recover. So, the
performance degrades earlier compared to the other two systems. But it can still
be observed that T-LQR2 performs on a par with MPC in spite of the former
replanning less than half the number of times compared to the latter.
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Fig. 7: Cost evolution of the different algorithms for a Quadrotor.

9.3 Car-like robot in the presence of obstacles:

We show a case where the problem involves static obstacles in the environment.
We assume the robot knows the map of the environment. The obstacles can be
defined as ellipsoids. The ellipsoids can be represented with center ok ∈ R2 and
a positive definite matrix Ek ∈ R2×2. The obstacle penalty function for an agent
whose position is pt in an environment with n obstacles is

Φ = M

n∑
k=1

exp(−[(pt − ok)TEk(pt − ok)− 1]),

where M is a scaling factor.
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Fig. 8: The figure shows the paths taken by the robot using a particular algorithm and how they
change as ε varies. A difference we see here is the paths taken by MPC-SH when compared to the
others. Since it plans for a short horizon and hence greedy, it takes a different path unlike the others.
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Fig. 9: Cost evolution of the different algorithms for a car-like robot in an environment with obstacles.

Car-like Car with trailers Quadrotor

x0 [3, 1, 0, 0]T [0, 0, π/3, 0, 0, 0]T
[0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0]T

xf [3.5, 7,m.pi/2, 0]T [2, 2, 0, 0, 0, 0]T
[2, 2, 2, 0, 0, 0, 0, 0, 0,
0, 0, 0]T

T, ∆t 35, 0.1 40, 0.1 30, 0.1

Wx diag(20, 20, 0, 0)
diag(10, 10, 1, 1,
1, 1)

diag(10, 10, 10, 1, 1,
1, 1, 1, 1, 1, 1, 1)

Wu diag(20, 200) diag(5, 5) diag(5, 10, 10, 10)

Wx
f 103diag(7, 7, 10, 1)

103diag(1, 1, 1, 0.1,
0.1, 0.1)

103diag(1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1)

Control
bounds

vt = [−4, 4],
ωt = [−π/12, π/12]

vt = [−0.8, 0.8],
ωt = [−π/6, π/6]

u
(1)
t = [0, 1.5],

u
(i)
t = [−0.05, 0.05]
i = 2, 3, 4

Table 1: Parameters used in the single agent simulations.

Car-like

x0 Agent 1: [3, 1, π/2, 0]; Agent 2: [5, 1, 0, 0]; Agent 3: [6, 8, 0, 0]

xf Agent 1: [3.5, 7, 0, 0]; Agent 2: [2, 8, 0, 0]; Agent 3: [8, 1.5, 0, 0]

T, ∆t 35, 0.1

Wx diag(20, 20, 0, 0)

Wu diag(20, 200)

Wx
f 103diag(7, 7, 10, 1)

Control bounds vt = [−4, 4], ωt = [−π/12, π/12]

Table 2: Parameters used in the multi-agent simulations.


