
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019 1

T-PFC: A Trajectory-Optimized Perturbation
Feedback Control Approach

Karthikeya S Parunandi1 and Suman Chakravorty2

Abstract—Traditional stochastic optimal control methods that
attempt to obtain an optimal feedback policy for nonlinear
systems are computationally intractable. In this paper, we de-
rive a decoupling principle between the open loop plan, and
the closed loop feedback gains, that leads to a deterministic
perturbation feedback control based solution (T-PFC) to fully
observable stochastic optimal control problems, that is near-
optimal. Extensive numerical simulations validate the theory,
revealing a wide range of applicability, coping with medium levels
of noise. The performance is compared against a set of baselines
in several difficult robotic planning and control examples that
show near identical performance to NMPC while requiring much
lesser computational effort.

Index Terms—Motion and Path Planning, Motion Control,
Nonholonomic Motion Planning, Optimization and Optimal Con-
trol.

I. INTRODUCTION

STOCHASTIC optimal control is concerned with obtaining
control laws under uncertainty, minimizing a user-defined

cost function while being compliant with its model and
constraints. This problem frequently arises in robotics, where,
planning a robot’s motion under sensor, actuator and environ-
mental limitations is vital to achieve a commanded task. At
present, online planning methods such as Model Predictive
Control (MPC) are preferred over offline methods. However,
it takes a toll on the onboard computational resources. On the
other hand, offline solutions are susceptible to drift, and cannot
deal with a dynamic environment. In this paper, we propose a
composite approach that merges the merits of both approaches
i.e, computation off-line and a robust feedback control online,
while re-planning, unlike in MPC, is performed only rarely,
and is typically required only beyond moderate levels of noise.

The main contributions of this paper are as follows: (a) to
demonstrate the decoupling between the deterministic open-
loop and the closed loop feedback control of perturbations, in a
fully-observed stochastic optimal setting, that is near-optimal,
(b) to propose a novel method based on the aforementioned
decoupling principle to deal with robotic stochastic optimal
control problem, and (c) to draw comparisons between the
proposed approach and the non-linear MPC framework, aimed

Manuscript received: February, 25, 2019; Revised May, 14, 2019; Accepted
June, 18, 2019.

This paper was recommended for publication by Editor Nancy Amato upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by (organizations/grants which supported the work.)

The authors are with the Department of Aerospace Engineering,
Texas A&M University, College Station, TX 77843 USA (e-mail:
karthikeyasharma91@gmail.com1; schakrav@tamu.edu2)

Digital Object Identifier (DOI): see top of this page.

at re-examining the widespread use of non-linear MPC in
robotic planning and control.

(a) Cost comparison

0.25 0.3 0.35 0.4 0.45 0.5 0.55

0

5

10

15

20

25

30

A
v
e
ra

g
e
 n

o
.

 o
f

re
p

la
n

n
in

g
s

(b) No. of re-plannings for ε > 0.25

Fig. 1: (a) Cost evolution over a feasible range of ε for a car-like
robot, where ε is a measure of the noise in the system. Note that the
performance of T-PFC is close to NMPC for a wide range of noise
levels, while T-PFC takes approximately 100× less time to execute
(see Table I). (b) No. of re-plannings for above-moderate noise levels
in the car-like robot simulation in gazebo using T-PFC is still around
8 times less than NMPC.

II. RELATED WORK

In fully observable systems, decision-making is typically
modeled as a Markov Decision Process (MDP). Methods
that try to solve MDPs using dynamic programming/HJB
face the ‘curse of dimensionality’ in high-dimensional
spaces while discretizing the state space [1]. Hence, most
successful/practical methods are based on Pontryagin’s
maximum principle [2] though it results in locally optimal
solutions. Iterative methods such as ILQG [3], DDP [4] and
stochastic DDP [5] fall under this category. They expand the
optimal cost-to-go and the system dynamics about a nominal,
which is updated with every iteration. ILQG relies on the
quadratic expansion of the cost-to-go and a linear expansion
of system dynamics. DDP/stochastic-DDP considers the
quadratic approximation of both. The convergence of these
methods is similar to Newton’s method. These methods
generally optimize the open loop and the linear feedback
gain together in an iterative fashion. Differently, in our
approach, owing to the decoupling, the open loop optimal
control sequence is obtained using a state-of-the-art Nonlinear
Programming (NLP) solver, and given this open loop
sequence, the optimal feedback gain is obtained using
the “decoupled” gain equations. This, in turn, avoids, the
expensive recursive Ricatti solutions required by ILQG and
DDP techniques (also see Sec. IV).

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

Model Predictive Control (MPC) is a popular planning
and control framework in robotics. It bypasses the curse of
dimensionality by repeatedly generating open-loop controls
through the numerical solution of a finite horizon constrained
optimal control problem at every discrete time-step [6].
Initially employed in chemical process industry [7], MPC
has found widespread application in robotics owing to its
ability to handle nonlinearity and constraints. Currently,
this framework is well-established in the field and has
demonstrated success in diverse range of problems including
manipulation [8], visual servoing [8], and motion planning.
In robotic motion planning, MPC is widely in use for motion
planning of mobile robots, manipulators, humanoids and
aerial robots such as quadrotors [9]. Despite its merits, it
can be computationally very expensive, especially in context
of robot planning and control, since (a) unlike in process
industries, typical robotic systems demand re-planning online
at high frequency, (b) most systems have highly non-linear
dynamical models and (c) constraints apply both on state
and controls. Hence, the nonlinear-MPC (NMPC) poses
a number of challenges in practical implementation [11].
Lighter variants of MPC such as LMPC, explicit MPC [11],
tube-based MPC [12] and other simplified NMPC-based
methods [10][11] have emerged. However, LMPC gradually
induces uncertainties and fails for highly non-linear systems
where the range of linearization is narrow and inadequate
[6]. Explicit MPC is not practical for higher state and input
states due to expensive memory requirements [11]. In [13],
the authors proposed a decoupling principle under a small
noise assumption and demonstrated first order near optimality
of the decoupled control law for general non-linear systems.

This paper establishes a decoupling principle that consists
of a nominal open loop controls sequence along with a
precisely defined linear feedback law dependent on the open
loop. The latter is derived using a perturbation expansion
of the Dynamic Programming equation, that is near optimal
to second order, and hence, can work for even moderate
noise levels. Further, we perform an extensive empirical
comparison of our proposed technique, the “Trajectory-
optimized Perturbation Feedback Control (T-PFC)”, with the
NMPC technique, that shows near identical performance up
to moderate noise levels, while taking approximately as much
as 100× less time than NMPC to execute in some examples
(cf. Fig. 1 and Table I).

III. PROBLEM FORMULATION AND
PRELIMINARIES

This section outlines the details of the system considered
and the problem statement.

A. System description

Let xt ∈ X ⊂ Rnx and ut ∈ U ⊂ Rnu denote
the system state and control input at time t respectively,
with X and U being corresponding vector spaces. We con-
sider a control-affine nonlinear state propagation model as

xt+1 = f(xt) + g(xt)ut + ε
√

dTωt, where, ωt ∈ N (0, I)
is an i.i.d. zero mean Gaussian noise with variance I. It is
derived from the noiseless continuous model: ẋt = f̄(xt) +
ḡ(xt)ut, as follows: Let dT be the discretization time for
the continuous time Stochastic Differential Equation (SDE)
: dx = f̄(x)dT + ḡ(x)udT + εdw, where ε is a scaling
factor. The discrete time dynamics are obtained from the
SDE as follows: f(xt) = xt + f̄(xt)dT , g(xt) = ḡ(xt)dT
and the noise term becomes ε

√
dTωt, where ωt are standard

Normal random variables. The reason we explicitly introduce
the discretization time dT will become clear later in this
section. It is assumed from hereon that O(dT 2) terms are
negligible, i.e, the discretization time is small enough.

B. Stochastic optimal control problem

Given an initial state x0, the problem of stochastic optimal
control [15], for a fully observed system, is to solve

min
π

E
ωt

[
CN (xN) +

N−1∑
t=0

Ct(xt,ut)
]

(1)

s.t xt+1 = f(xt) + g(xt)ut + ε
√
dTωt

for a sequence of admissible control policies π =
{π0, π1, ..πt, ., πN−1}, where πt : X → U , Ct : X × U → R
denotes the incremental cost function and CK : X → R, the
terminal cost.

C. Definitions

Let (x̄t, ūt) represent the nominal trajectory of the system,
with its state propagation described by the model, x̄t+1 =
f(x̄t)+g(x̄t)ūt. Let (δxt, δut) denote the perturbation about
its nominal, defined by δxt = xt − x̄t, δut = ut − ūt.
Now, by Taylor’s expansion of (1) about the nominal (x̄t, ūt)
and the zero mean wt, the state perturbation can be writ-
ten as δxt+1 = Atδxt + Btδut + ε

√
dTωt + rt, where

At = ∂f(xt)
∂xt
|x̄t + ∂g(xt)

∂xt
|x̄t ūt, Bt = g(x̄t) and rt represents

higher order terms.
Let J̄t(xt) denote the optimal cost-to-go function at time

t from xt for the deterministic problem (i.e, ε = 0), and
J̄εt (xt) denote the optimal cost-to-go function of the stochastic
problem. We expand the deterministic cost-to-go quadratically
about the nominal state in terms of state perturbations as
J̄t(xt) = J̄t(x̄t) + Gtδxt + 1

2δx
ᵀ
tPtδxt + qt, where, Gt =

∂J̄t(xt)
∂xt

ᵀ
|x̄t , Pt = ∂2J̄t(xt)

∂2xt
|x̄t and qt denotes the higher order

terms.
Finally, we consider a step cost function of the form

Ct(xt,ut) = l(xt) + 1
2uᵀ

tRut and let Lt = ∂l(xt)
∂xt
|x̄t and

Ltt = ∂2l(xt)
∂2xt

|x̄t . Using the definitions above, we assume that
the functions f(xt), J̄(xt) and l(xt) are sufficiently smooth
over their domains such that the requisite derivatives exist and
are uniformly bounded.

IV. A NEAR OPTIMAL DECOUPLING PRINCIPLE

This section states a near-optimal decoupling principle that
forms the basis of the T-PFC algorithm presented in the next
section. Our program in this section shall be as follows:

PARUNANDI et al.: T-PFC 3

• Decoupling: First, we shall show that the optimal open
loop control sequence of the deterministic problem (given
by the gains Gt) can be designed independent of the
closed loop gains determined by Pt, i.e, the Pt do not
affect the Gt equations for an optimal control sequence
in the deterministic problem.

• Step A: Next, we shall only keep the first two terms in
the optimal deterministic feedback law, i.e., ul

t = ūt +
Ktδxt, and show that the closed loop performance of
the truncated linear law is within O(ε2dT) of the full
deterministic feedback law when applied to the stochastic
system.

• Step B: Finally, we will appeal to a result by Fleming
[26] that shows that the closed loop performance of the
full deterministic law applied to the stochastic system is
within O(ε4dT) of the optimal stochastic closed loop,
and show that the stochastic closed loop performance of
the truncated linear feedback law is within O(ε2dT) of
the optimal stochastic closed loop

The scheme above is encapsulated in Fig. 2.

(a)

Fig. 2: Schematic of the Near-Optimal Decoupling Principle

Proposition 1: Decoupling. Given an optimal nominal
trajectory, the backward evolutions of the deterministic
gain Gt and the covariance Pt of the optimal cost-to-go
function J̄t(xt), initiated with GN = ∂C̄N (x̄N)

∂xN

ᵀ
|x̄N

and

PN = ∂2C̄N (x̄N)
∂2xN

|x̄N
respectively, are as follows:

Gt = Lt +Gt+1At (2)

Pt = Ltt +Aᵀ
t Pt+1At −Kᵀ

t StKt +Gt+1 ⊗ R̃t,xx (3)

for t = {0, 1, ..., N−1}, where, St = (Rt+B
ᵀ
t Pt+1Bt),Kt =

−S−1
t (Bᵀ

t Pt+1At+(Gt+1⊗R̃txu
)ᵀ), R̃t,xx = ∇2

xxf(xt)|x̄t +
∇2
xxg(xt)|x̄t ūt, R̃t,xu = ∇2

xu(f(xt) + g(xt)ut)|x̄t,ūt where
∇2
xx represents the Hessian of a vector-valued function w.r.t

x and ⊗ denotes the tensor product.
Proof for the above is provided in the appendix section.

In essence, the key step in the proof of proposition-1 is
in realizing that when the nominal trajectory is optimal,
the term corresponding to the open-loop control trajectory
vanishes in deriving an expression for perturbed control as
shown in equation (4) and thereafter. This means that the
dependency of the perturbed variables in the design of the

nominal trajectory is nullified resulting in equations (2) and
(3). It may be noted here that equation (2) corresponds to the
co-state equation following the first order optimality conditions
over an optimal nominal trajectory, whereas equation (3) is
a discrete time dynamic Riccati-like equation dictating the
feedback law design. The consequence of the above result is
that the second order sensitivity matrix in the expansion of
the cost, Pt which determines the feedback gain Kt, doesn’t
influence the first order sensitivity matrix Gt (the co-state)
that determines the optimal open-loop sequence. Thus, the
decoupling between the nominal and linear feedback holds
true. In other words, the design of an optimal control policy
in a fully-observed problem as in (1) can be decoupled into
the design of an open-loop deterministic nominal (x̄t, ūt) and
then a linear feedback law whose coefficients can be extracted
through a time-recursive propagation of (2) and (3), but which
is nonetheless near optimal to second order (O(ε2dT)) as we
shall show below.
Step A. Let the optimal deterministic feedback law for the
deterministic system (ε = 0) be given by: ut(xt) = ūt +
Ktδxt + R(δxt). The result above gives us the recursive
equations required to solve for ūt in terms of Gt, and Kt in
terms of Pt. Consider the truncated linear feedback law, i.e.,
ul

t(xt) = ūt +Ktδxt. Now, we shall apply the control laws
ut(.) and ul

t(.) to the stochastic system (ε 6= 0) and compare
the closed loop performance. It can be shown that the state
perturbations from the nominal under the optimal deterministic
law evolve according to δxt+1 = Ātδxt + BtR(δxt) +
St(δxt) + ε

√
dTωt, while that under the truncated linear law

evolves according to δxl
t+1 = Ātδx

l
t + St(δx

l
t) + ε

√
dTωt,

where Āt = At+BtKt is the linear closed loop part, and St(.)
are the second and higher order terms in the dynamics. The
closed loop cost-to-go under the full deterministic feedback
law is then given by: J̄k(xk) = E[

∑N
t=k c(x̄t, ūt)+C1

t δxt +
Ht(δxt)], and that for the truncated linear law is given by:
J̄ lk(xk) = E[

∑N
t=k c(x̄t, ūt)+C1

t δx
l
t+Ht(δx

l
t)], where C1

t is
the first order coefficient of the step cost expansion that depend
only on the nominal (x̄t, ūt), and Ht(.) denote second and
higher order terms of the expansions. Then J̄k(xk)−J̄ lk(xk) =∑N
t=k E[C1

t (δxt − δxl
t)]︸ ︷︷ ︸

T1

+

N∑
t=k

E[Ht(δxt)−Ht(δx
l
t)]︸ ︷︷ ︸

T2

. Con-

sider the deviation between the two closed loops δxt− δxl
t =

Āt(δxt− δxl
t) +BtRt(δxt) +St(δxt)−St(δxl

t), where note
that ||Rt(δxt)|| = O(ε2dT), as are ||St(δxl

t)|| and ||St(δxt)||
since they consist of second and higher order terms in the
feedback law and the dynamics respectively, when ε

√
dT is

small. Therefore, it follows that the closed loop state deviation
between the full deterministic and the truncated linear law
is ||δxt − δxl

t|| = O(ε2dT). Further, it is also true that
δxt and δxl

t are both O(ε
√
dT). Hence, using the above it

follows that terms T1 + T2 is O(ε2dT). Therefore, it follows
that the difference in the closed loop performance of the full
deterministic feedback law and the truncated linear feedback
law is |J̄k(xk)− J̄ lk(xk)| = O(ε2dT).
Step B: Now, we shall establish the closeness of the op-
timal stochastic closed loop and the stochastic closed loop

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

under the truncated linear feedback law. First, we recount
a seminal result due to Fleming [26] regarding the ”good-
ness” of the deterministic feedback law for the stochastic
system. Fleming considered the continuous time SDE: dx =
f̄(x)dt + g(x)udt + εdw. Let the cost-to-go of the optimal
stochastic closed loop be given by J̄ε(t,x), and let the cost-
to-go of the closed loop under the deterministic law be given
by J̄(t,x). Then, it is shown that the functions J̄ε and J̄
have the following perturbation expansion in terms of ε:
J̄ε = ϕ + ε2θ + ε4χ,and J̄ = ϕ + ε2θ + ε4χ′, where ϕ, θ,χ
and χ′ are functions of (t,x). Therefore, it follows that the
difference in the closed loop performance between the optimal
stochastic and optimal deterministic law when applied to the
stochastic system is O(ε4)!
If we adapt this result to our discrete time case with a time
discretization dT , where O(dT 2) is negligible, then the differ-
ence between the true stochastic closed loop performance and
that under the deterministic optimal law, |Jεt (xt)− Jt(xt)| =
O(ε4dT). Thus, using the above result and the result form
step A, it follows that difference between the closed loop
performance of the truncated linear feedback law and that
of the optimal stochastic closed loop, |Jεt (xt) − J lt(xT)| =
O(ε2dT) at the least. This establishes the near optimality of
the truncated linear feedback loop.
ILQG/DDP: The condition in (2) is precisely when the ILQG/
DDP algorithms are deemed to have converged. However, that
does not imply that the feedback gain at that stage for ILQG/
DDP is the same as that in Eq. (3), and in fact, the feedback
gains of ILQG/ DDP are different from that in Eq. 3 as we
shall see in our examples. The basic idea in the development
above is to design an open loop optimal sequence, and then
design a feedback gain according to Eq. 3, it is in this second
step that we differ from ILQG/ DDP (which are methods to
get open loop optimal sequences and make no claims about
the feedback gains).

V. TRAJECTORY-OPTIMIZED PERTURBATION
FEEDBACK CONTROL (T-PFC)

In this section, we formalize the Trajectory-optimized Per-
turbation Feedback Control (T-PFC) method based on the
decoupling principle of the previous section.

A. Nominal Trajectory Design

The optimal nominal trajectory can be designed by solving
the deterministic equivalent of problem (1), which can be
formulated as an open-loop optimization problem as follows:

min
ǔ

[
CN (xN) +

N−1∑
t=0

Ct(xt,ut)
]

s.t xt+1 = f(xt) + g(xt)ut

where, ǔ = {u0,u1, ..uN−1}. This is a design problem
that can be solved by a standard NLP solver. The resultant
open-loop control sequence together with a sequence of states
obtained through a forward simulation of noise-free dynamics
constitute the nominal trajectory.
Constraints on the state and the control can be incorporated

in the above problem as follows:
State constraints: Non-convex state constraints such as ob-
stacle avoidance can be dealt by imposing exponential penalty
cost as barrier functions. Obstacles can be circumscribed
by Minimum Volume Enclosing Ellipsoids (MVEE)[14] that
enclose a polygon given its vertices. Such kind of bar-
rier functions can be formulated by [16]: Cobs(xt) =∑n
m=1 Γm exp(−ρm(xt−cm)ᵀEm(xt−cm)), where, cm and

E correspond to the center and geometric shape parameters
of the mth ellipsoid respectively. Γm and ρm are the scaling
factors. Obstacles are assimilated into the problem by adding
Cobs(xt) to the incremental cost Ct(xt,ut).
Control bounds: Control bounds can safely be incorpo-
rated while designing the optimal nominal trajectory as hard
constraints in the NLP solver. In this case, the constraints
are linear in control inputs and the modified incremental
cost function can be written as C ′t(xt,ut) = Ct(xt,ut) +
µt(Ftut +Ht). The first order condition (4) is then modified
to Rtūt +Bᵀ

t G
ᵀ
t+1 + F ᵀ

t µ
ᵀ
t = 0 using KKT conditions [17],

which upon utilizing in the derivation of expression for δut

nullifies the influence of µt. Hence, equations (3), (4) and (6)
will remain the same.

B. Linear Feedback Controller Design

Given a nominal trajectory (x̄, ū), a linear perturbation
feedback controller around it is designed by pre-computing
the feedback gains. The sequence of Kt is determined by a
backward pass of Gt and Pt as described by (3) and (4). The
linear feedback control input is given by δut = Ktδxt. Hence,
ut = ūt + δut = ūt + Kt(xt − x̄t) forms the near-optimal
online control policy. Algorithm-1 outlines the complete T-
PFC algorithm.
Re-planning: At any point of time during the execution, if
the cost deviates beyond a threshold from the nominal cost
i.e, CTh, a re-planning can be initiated.

VI. EXAMPLE APPLICATIONS

This section demonstrates T-PFC in simulation with three
examples. The Gazebo [18] robotics simulator is used as a
simulation platform in interface with ROS middleware [19].
Numerical optimization is performed using the Casadi [20]
framework employing the Ipopt [21] NLP software. A
feasible trajectory generated by the non-holonomic version of
the RRT algorithm [22] is fed into the optimizer for an initial
guess. Simulations are carried out in a computer equipped with
an Intel Core i7 2.80GHz octa-core processor. The results
presented in each example are averaged from a set of 100
Monte Carlo simulations for a range of tolerable noise levels ε.
The proposed approach has been implemented to the problem
of motion planning under process noise in the dynamical
model to obtain the cost plots and then simulated in a physics
engine on a realistic robot model for further analysis.
Noise characterization: Process noise is modeled as a stan-
dard Brownian noise added to the system model with a
standard deviation of ε

√
dt. Since it is assumed to be addi-

tive Gaussian and i.i.d. (even w.r.t. the noise in other state
variables), it could account for various kinds of uncertainties

PARUNANDI et al.: T-PFC 5

Algorithm 1: T-PFC

Input: Initial State - x0, Goal State - xf , Time-step ∆t,
Horizon - N , System and environment parameters - P;
t← 0;
/* Run until the current state is in ε
proximity to the goal */

while ‖xt − xf‖ > ε do
/* Plan at t = 0 and re-plan when the
cost deviation exceeds a threshold
or if not within the goal proximity
at t = N − 1.*/

if t == 0 or Cost fraction > CTh or t == N-1 then
/* Open-loop sequence */
(x̄t:N−1, ūt:N−1)←Plan(xt,P,xf)
/* Closed-loop parameters */
Compute parameters:{Pt:N−1, Gt:N−1,Kt:N−1}

end if
Policy evaluation: ut ← ūt +Kt(xt − x̄t)
Process: xt+1 ← f(xt) + g(xt)ut + εωt

t← t+ 1
end while

including that of parametric, model and the actuator. ε is a
scaling parameter that is varied to analyze the influence of
the magnitude of the noise. Other case-specific parameters are
provided in Table II.

For simulation, we use realistic physical robot models
in a physics engine in an obstacle-filled environment along
with moderate contact friction (µ = 0.9) and drag, which
are unaccounted for in our system model. Apart from this
model uncertainty, we also introduce actuator noise through
an additive Gaussian of standard deviation εσt, where σt is
‖us‖∞.

A. Car-like robot

A 4-D model of a car-like robot with its state described by
(xt, yt, θt, φt)

ᵀ is considered. For a control input constituting
of the driving and the steering angular velocities, (ut, wt)

ᵀ,
the state propagation model is as follows:

ẋ = u cos(θ), θ̇ =
u

L
tan(φ)

ẏ = u sin(θ), φ̇ = ω

Fig. 4 shows an example path taken by a car-like robot in
an environment filled with 8 obstacles enclosed in MVEEs.
Plots in Fig. 3 (a) indicate the averaged magnitude of both the
nominal and the total control signals at ε = 0.25. The standard
deviation of the averaged total control sequence, in both plots,
from the nominal is less than one percent of it.

B. Car-like robot with trailers

With n trailers attached to a car-like robot, the state of a
car-like-robot is augmented by n dimensions, each additional
entry describing the heading angle of the corresponding trailer.

0 100 200 300 400 500

time (in time-steps)

0

0.2

0.4

0.6

v
 (

m
/s

)

Nominal

Total Control

0 100 200 300 400 500

time (in time-steps)

0

0.5

1

 (
m

/s
)

Nominal

Total Control

(a)

0 100 200 300 400

time (in time-steps)

0

0.2

0.4

0.6

v
 (

m
/s

)

Nominal

Total Control

0 100 200 300 400

time (in time-steps)

0

0.5

1

 (
m

/s
)

Nominal

Total Control

(b)

Fig. 3: Optimal nominal and total control inputs (averaged) at ε =
0.25 for (a) a car-like robot and (b) car with trailers

(a) Rviz trajectory (b) Robot’s world in Gazebo

Fig. 4: Motion Planning of a car-like robot using T-PFC for an
additive control noise of standard deviation = 25% of the norm of
saturation controls i.e, ε = 0.25. The axes along and perpendicular
to the robot’s trajectory are indicated in red and green colors
respectively.

In the current example, n = 2 trailers are considered and their
heading angles are given by [23]:

θ̇1 =
u

L
sin(θ − θ1)

θ̇2 =
u

L
cos(θ − θ1)sin(θ1 − θ2)

Hence, the robot has six degrees of freedom. Its world is
considered to be composed of four obstacles as shown in Fig.
5. The robot, its environment and its trajectory shown are at
ε = 0.25. Fig. 5(b) displays the nominal and the total control
signals averaged at ε = 0.25.

(a) Rviz trajectory (b) Robot’s world in Gazebo

Fig. 5: Motion planning of a car with trailers using T-PFC for
an additive control noise of standard deviation set to 25% of the
norm of saturation controls i.e, ε = 0.25. The axes along and
perpendicular to the robot’s trajectory are indicated in red and green
colors respectively.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

C. 3D Quadrotor

The 12 DOF state of a Quadrotor comprises of its position,
orientation and corresponding rates - (xt, θt,vt, ωt)

ᵀ. Forces
and torques in its body frame are external inputs in the
equations below. However, in the real world (and also in
Gazebo simulation shown here) the control input is typically
fed into the motors. Hence, we consider rotor velocities as the
control input, which can be obtained by a linear transformation
of forces and torques in body frame. The state propagation
model is then given by the following equations [27]:

ẋt = vt, v̇t = g +
1

m
(RθtFb − kdvt)

θ̇t = J−1
w ωt, ω̇t = I−1

c (τt − ω × Icω)

Simulations are performed using an AR.drone model [28] in
an environment containing a cylindrical obstacle as shown in
Fig. 6.

(a) (b)

Fig. 6: (a) Quadrotor’s world in Gazebo - green boxes represent its
initial and final positions respectively. (b) Example trajectory in rviz

TABLE I: Average run-time of algorithms in seconds

Robot type MPC T-LQR ILQG T-PFC
Car-like 447.89 4.48 161 4.52

Car with trailers 384.42 4.11 146 4.24
Quadrotor 71 3.33 49 3.5

TABLE II: Simulation parameters

Car-like Car with trailers Quadrotor
x0 (0, 0, 0, 0)ᵀ (0, 0, 0, 0, 0, 0)ᵀ (0, 0, 0.08, 0,

0, 0, 0, 0, 0, 0, 0, 0)′

xf (5, 5, 0, 0)ᵀ (5, 6, 0, 0, 0, 0)ᵀ (2.6, 2.4, 1.75,
0, 0, 0)ᵀ

N,∆t 229, 0.1s 180, 0.1s 60, 0.1s
Control u1

s =(0.7,−0.7) u1
s =(0.7,−0.7) u1

s = (20,−20)
bounds u2

s =(−1.3, 1.3) u2
s =(−1.3, 1.3) ui

s = (1,−1)
i = 2, 3, 4

VII. DISCUSSION AND COMPARISON OF
METHODS

This section empirically details the implications of the
decoupling principle and the T-PFC from the examples in the
previous section. Further, we make a comparison here with
the Non-linear MPC (NMPC) [24], T-LQR [13] and ILQG
[3]. Average cost incurred, rate of re-planning and time-taken
for an execution are chosen as the performance criteria.

(a) (b)

Fig. 7: Cost evolution over a feasible range of ε for (a) car with
trailers robot and (b) 3D Quadrotor.

Nonlinear MPC: A deterministic NMPC is implemented with
a typical OCP formulation, by re-solving it at every time-
step. The NMPC variant implemented here is summarized in
Algorithm-2. The prediction horizon is taken as N−i at the ith

time-step. In other words, planning is performed all the way
till the end rather than for next few time-steps as in typical
MPC. This is done for two reasons:
(1) The control sequence obtained this way is equivalent to the
deterministic optimal control law that includes higher order
terms of feedback control. We wish to juxtapose it with T-
PFC that only has a linear feedback (first-order).
(2) Due to high penalty cost of multiple barrier functions,
the optimizer is prone to failures with smaller prediction
horizons. Also, by the above arrangement, it follows from
Bellman’s Principle of Optimality that the predicted open-loop
control input will be equal to the optimal feedback policy [24].
Therefore, this also results in nominal stability.

Algorithm 2: NMPC
Input: Initial State - x0, Goal State - xf , Horizon - N ,
System and environment parameters - P;
t← 0;
while t < N do

(x̄t:N−1, ūt:N−1) ← Plan(xt,ut, N − t,xf ,P) ;
Process: xt+1 ← f(xt) + g(xt)ūt + εωt

t← t+ 1 ;
end while

T-LQR: T-LQR is implemented using the same nominal cost
as T-PFC. However, the cost parameters of the LQR are tuned
entirely separately from the nominal cost [13].
ILQG: ILQG is initiated with the same initial guess as the
above three methods. Since the cost contains exponential terms
from the barrier functions, it is crucial to carefully choose right
parameters for regularization and line search. Regularization
is performed by penalizing state deviations in a quadratic
modification schedule and an improved line search, both as
mentioned in [25]. The feedback gains computed at the final
iteration is used for feedback control against noise on top of
the resulting open-loop trajectory.
Comparison: From Fig. 1 and 7, the average cost incurred
for the systems in each simulation via T-PFC is close to
that incurred through an NMPC approach. In other words,

PARUNANDI et al.: T-PFC 7

the cost accumulated by our perturbation linear feedback
approach is nearly the same as that accumulated by an optimal
deterministic control law over the feasible range of ε for T-
PFC. T-LQR being based on the first order cost approximation,
the cost rapidly diverges with increase in the noise level as
reflected in Figs. 1 and 6. On the other hand, as ILQG doesn’t
make any claims regarding feedback, it is expected and is also
clear from the same plots that the performance deteriorates
rapidly with noise.

Table I shows the average time taken to execute an episode
with each of the algorithms with no intermediate re-planning.
The total execution time taken by NMPC is nearly 100 times
the T-PFC in the most complex of the examples considered.
The low online computational demand of T-PFC makes it
scalable to implement in systems with higher dimensional
state-space.

Another challenging aspect in the implementation of NMPC
is generating initial guesses for online optimization. With a
number of obstacle constraints or barrier functions, the NMPC
optimizer fails to converge to a solution with trivial initializa-
tions and even with warm-starting, more so at higher noise
levels. In contrast, T-PFC typically solves the optimization
problem only once and hence, a one-time initialization is
sufficient for the execution. Fig. 1 (b) shows the average rate
of re-planning for example-1. Until ε = 0.25, no re-planning
was necessary in the example of a car-like robot. From Fig. 1
(b), it is evident that even at above-moderate levels of noise,
the re-planning frequency is still eight times lesser than that
required for an NMPC.

Unlike T-LQR, T-PFC also handles the residual second or-
der terms of cost-to-go as well as system dynamics. This way,
tuning is also bypassed as the feedback adapts itself according
to the nominal cost. In contrast, T-LQR can apply aggressive
controls during feedback depending on LQR parameter-tuning.
T-PFC in an attempt to reduce the overall cost, generates
smooth and small controls relative to its nominal. This is
noticeable in Fig. 3. Also, this fact plays an advantage when
the nominal control is on the constraint boundary and it is
undesirable for the perturbation control to deviate significantly
from the nominal.

The advantage of decoupling between the optimal nominal
and the perturbation feedback law is clear when compared
with ILQG. Parameter tuning in ILQG for regularization and
line-search involves trial and error regulation and is often
time consuming to searching for the right set of parameters
to every given system, especially when the cost function is
non-quadratic and non-polynomial. On the other hand, an
NLP solver (using, say, interior-point methods) can be conve-
niently used in a black box fashion in perturbation feedback
approaches such as T-PFC (or even T-LQR) without needing
any fine-tuning to result in a deterministic control policy.
Small noise assumption: Though the theory is valid for small
noise cases i.e, for small epsilons, empirical results suggest a
greater range of stability i.e, stability holds even for moderate
levels of noise. As long as the noise falls in this range, a
precise knowledge of the magnitude of noise is irrelevant as
T-PFC is insensitive to noise levels.
Limitations: 1) T-PFC assumes a control-affine system and the

cost to be in a specific form. Though many robotic systems
are affine in controls, methods like T-LQR have an edge by
considering a general nonlinear system.
2) Though T-LQR does not fare well on the cost incurred, it
offers a flexibility to tune the feedback parameters according
to ones needs, even if that means sacrificing the optimality.
Is deterministic NMPC necessary? Since the MPC frame-
work is broad and there are several ad-hoc techniques that
could efficiently solve NMPC, answering this question re-
quires a much deeper analysis. However, our central obser-
vation is that the T-PFC (and even T-LQR) method has near
identical performance with deterministic NMPC in problems
that mandate long horizons. They are also orders of magnitude
computationally efficient, both according to the decoupling
theory, as well as empirically, based on the problems that we
have considered here. In such cases, why not use perturbation
feedback techniques instead of NMPC at least until the noise
levels predicate frequent re-planning?

VIII. CONCLUSION

In this paper, we have established that in a fully-observed
scenario, a deterministic action policy can be split into an
optimal nominal sequence and a feedback that tracks the
nominal in order to maintain the cost within a tube around
the nominal. T-PFC maintains low cost, has low online com-
putation and hence, faster execution. This makes our approach
tractable in systems with higher dimensional states. Like MPC,
the nominal trajectory design of T-PFC also allows for the
inclusion of constraints as described. We have empirically
shown that the overall control signals are very close to the
saturation boundary, if not with-in, when the nominal is at
saturation. Also, T-PFC works with minimal number of re-
plannings even at medium noise levels, as against to the
traditional principle of deterministic MPC to re-plan in a
recurrent fashion irrespective of noise levels. Future work
involves exploring this idea of decoupling to partially-observed
systems and dealing with nonlinear hard inequality constraints.

APPENDIX

Proof of Proposition 1:

J̄t(xt) = min
ut

Jt(xt,ut) = min
ut

{Ct(xt,ut) + J̄t+1(xt+1)}

By Taylor’s expansion about the nominal state at time t+ 1,

J̄t+1(xt+1) =J̄t+1(x̄t+1) +Gt+1δxt+1

+
1

2
δxt+1

ᵀPt+1δxt+1 + qt+1(δxt+1).

Substituting δxt+1 = Atδxt + Btδut + rt(δxt, δut) in the
above expansion,

J̄t+1(xt+1) = J̄t+1(x̄t+1) +Gt+1(Atδxt +Btδut + rt(δxt

, δut)) + (Atδxt +Btδut + rt(δxt, δut))
ᵀPt+1(Atδxt

+Btδut + rt(δxt, δut)) + qt+1(δxt+1).

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

Similarly, expand the incremental cost at time t about the
nominal state,

Ct(xt,ut) = l̄t + Ltδxt +
1

2
δxt

ᵀLttδxt +
1

2
δut

ᵀRtūt

+
1

2
ūᵀ

tRtδut +
1

2
δut

ᵀRtδut +
1

2
ūᵀ

tRtūt + st(δxt).

Jt(xt,ut) =

J̄t(x̄t)︷ ︸︸ ︷
[l̄t +

1

2
ūᵀ

tRtūt + J̄t+1(x̄t+1)]

+ δut
ᵀ(Bᵀ

t

Pt+1

2
Bt +

1

2
Rt)δut + δut

ᵀ(Bᵀ
t

Pt+1

2
Atδxt

+
1

2
Rtūt +Bᵀ

t

Pt+1

2
rt) + (δxt

ᵀAᵀ
t

Pt+1

2
Bt +

1

2
ūtRt

+ rᵀt
Pt+1

2
Bt +Gt+1Bt)δut + δxt

ᵀAᵀ
t

Pt+1

2
Atδxt

+ δxt
ᵀPt+1

2
Aᵀ
t rt + (rᵀt

Pt+1

2
At +Gt+1At)δxt

+ rᵀt
Pt+1

2
rt +Gt+1rt + qt.

Now,min
ut

Jt(xt,ut) = min
ūt

Jt(x̄t, ūt) +min
δut

Ht(δxt, δut)

First order optimality: At the optimal nominal control se-
quence ūt, it follows from the minimum principle that

∂Ct(xt,ut)

∂ut
+
∂g(xt)

∂ut

ᵀ
∂J̄t+1(xt+1)

∂xt+1
= 0

⇒ Rtūt +Bᵀ
t G

ᵀ
t+1 = 0 (4)

By setting ∂Ht(δxt,δut)
∂δut

= 0, we get:

δu∗t = −S−1
t (Rtūt +Bᵀ

t G
ᵀ
t+1)− S−1

t (Bᵀ
t Pt+1At+

(Gt ⊗ R̃t,xu)ᵀ)δxt − S−1
t (Bᵀ

t Pt+1rt)

= −S−1
t (Bᵀ

t Pt+1At + (Gt+1 ⊗ R̃t,xu)ᵀ)︸ ︷︷ ︸
Kt

δxt

+ S−1
t (−Bᵀ

t Pt+1rt)︸ ︷︷ ︸
pt

where, St = Rt +Bᵀ
t Pt+1Bt.

⇒ δut = Ktδxt + pt.

Substituting it in the expansion of Jt and regrouping the terms
based on the order of δxt (till 2nd order), we obtain:

J̄t(xt) = J̄t(x̄t) + (Lt + (Rtūt +Bᵀ
t G

ᵀ
t+1)Kt +Gt+1At)δxt

+
1

2
δxt

ᵀ(Ltt +Aᵀ
t Pt+1At −Kᵀ

t StKt +Gt+1 ⊗ R̃t,xx)δxt.

Expanding the LHS about the optimal nominal state result
in the equations (2) and (3).

REFERENCES

[1] R. Bellman, Dynamic Programming, 1st edition, Princeton, NJ, USA:
Princeton University Press, 1957.

[2] R. E. Kopp, “Pontryagin’s maximum principle,” Mathematics in Science
and Engineering, vol. 5, pp. 255-279, 1962.

[3] E. Todorov and W. Li, “A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems,”
in American Control Conference, 2005. Proceedings of the 2005. IEEE,
2005, pp. 300 - 306.

[4] D. H. Jacobson and D. Q. Mayne, “Differential dynamic program-
ming,” 1970.

[5] E. Theodorou, Y. Tassa, and E. Todorov, “Stochastic differential dynamic
programming,” in American Control Conference (ACC), 2010. IEEE,
2010, pp. 1125 - 1132.

[6] P. Rutquist, “Methods for Stochastic Optimal Control,” PhD Thesis,
Chalmers University of Technology, pp. 9-12, 2017.

[7] D. Q. Mayne, “Model Predictive Control: Recent developments and
future promise,” Automatica, vol. 50, issue no. 12, pp. 2967-2986, Dec.
2014.

[8] N. Cazy, P.-B. Wieber, P. R. Giordano and F. Chaumette, “Visual
Servoing Using Model Predictive Control to Assist Multiple Trajectory
Tracking,” 2017 IEEE International Conference on Robotics and Au-
tomation (ICRA 2017), 2017.

[9] G. Garimella, M. Sheckells and M. Kobilarov, “Robust Obstacle Avoid-
ance for Aerial Platforms using Adaptive Model Predictive Control,”
2017 IEEE International Conference on Robotics and Automation (ICRA
2017), 2017.

[10] G. Williams and N. Wagener and B. Goldfain and P. Drews and J. M.
Rehg and B. Boots and E. A. Theodorou, Information theoretic MPC
for model-based reinforcement learning, IEEE International Conference
on Robotics and Automation (ICRA), 2017.

[11] E. Camacho and C. Bordons, “Nonlinear model predictive control: An
introductory review,” in Assessment and Future Directions of Nonlinear
Model Predictive Control, ser. Lecture Notes in Control and Information
Sciences. Springer Berlin Heidelberg, 2007, vol. 358, pp. 116.

[12] W.Langson, I.Chryssochoos and S.V. Raković and D.Q. Mayne, “Robust
model predictive control using tubes”, Automatica, vol. 40, pp.125-133,
Elsevier, 2004.

[13] M. Rafieisakhaei, S. Chakravorty and P. R. Kumar, “A Near-Optimal De-
coupling Principle for Nonlinear Stochastic Systems Arising in Robotic
Path Planning and Control,” 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), 2017.

[14] M. Rafieisakhaei, S. Chakravorty and P. R. Kumar, “T-LQG : Closed-
Loop Belief Space Planning via Trajectory-Optimized LQG,” 2017 IEEE
International Conference on Robotics and Automation (ICRA 2017),
2017.

[15] D. Bertsekas, Dynamic Programming and Optimal Control: 3rd Ed.
Athena Scientific, 2007.

[16] N. Moshtagh, “Minimum volume enclosing ellipsoid, Convex Optimiza-
tion, vol. 111, p. 112, 2005.

[17] V. Nevistic, J. Primbs, “Constrained nonlinear optimal control: A con-
verse HJB approach,” Technical report 96-021, California Institute of
Technology, 1996.

[18] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Sendai, Japan, pp. 21492154,
Sep. 2004.

[19] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, Andrew Ng, “ROS: an open-source Robot Operating Sys-
tem”, Open-source software workshop of the International Conference
on Robotics and Automation, Kobe, Japan, 2009.

[20] J.A.E. Andersson, J. Gillis, G. Horn, J.B. Rawlings and M. Diehl,
“CasADi-A software framework for nonlinear optimization and optimal
control”, Mathematical Programming Computation, In press, 2018.

[21] A. Wächter and L. T. Biegler, “On the Implementation of a Primal-Dual
Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear
Programming”, Mathematical Programming 106(1), pp. 25-57, 2006

[22] S.M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Technical Report 98-11, Iowa State University, October 1998.

[23] S.M. LaValle, Planning algorithms, Cambridge University Press, 2006.
[24] B. Kouvaritakis, M. Cannon (Eds.), “Nonlinear predictive control, theory

and practice,” London: The IEE, 2001.
[25] Y. Tassa, T. Erez, E. Todorov, “Synthesis and Stabilization of Complex

Behaviors thorough Online Trajectory Optimization,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
49064913, Algarve, Portugal.

[26] W. H. Fleming, “Stochastic Control for Small Noise Intensities”, SIAM
J. Control, vol. 9, n. 3, pp. 473-517.

[27] T. Luukkonen, “Modelling and control of quadcopter, Independent
research project in applied mathematics, Espoo, 2011.

[28] F.Furrer and M.Burri and M.Achtelik and R.Siegwart, “RotorS—A
Modular Gazebo MAV Simulator Framework”, Robot Operating System
(ROS): The Complete Reference (Volume 1), 2016.

