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SLAP: Simultaneous Localization and Planning
Under Uncertainty via Dynamic Replanning

in Belief Space
Ali-akbar Agha-mohammadi , Saurav Agarwal , Sung-Kyun Kim, Suman Chakravorty, and Nancy M. Amato

Abstract—Simultaneous localization and planning (SLAP)
is a crucial ability for an autonomous robot operating under
uncertainty. In its most general form, SLAP induces a continuous
partially observable Markov decision process (POMDP), which
needs to be repeatedly solved online. This paper addresses this
problem and proposes a dynamic replanning scheme in belief
space. The underlying POMDP, which is continuous in state, action,
and observation space, is approximated offline via sampling-based
methods, but operates in a replanning loop online to admit local
improvements to the coarse offline policy. This construct enables
the proposed method to combat changing environments and large
localization errors, even when the change alters the homotopy class
of the optimal trajectory. It further outperforms the state-of-the-
art Feedback-based Information RoadMap (FIRM) method by
eliminating unnecessary stabilization steps. Applying belief space
planning to physical systems brings with it a plethora of challenges.
A key focus of this paper is to implement the proposed planner
on a physical robot and show the SLAP solution performance
under uncertainty, in changing environments and in the presence
of large disturbances, such as a kidnapped robot situation.

Index Terms—Belief space, motion planning, mobile robots,
partially observable Markov decision process (POMDP), robust,
rollout, uncertainty.

I. INTRODUCTION

S IMULTANEOUS localization and planning (SLAP) refers
to the problem of (re)planning dynamically every time the

localization module updates the probability distribution on the
robot’s state. For autonomous navigation, solving SLAP and en-
abling a robot to perform online (re)planning under uncertainty
is a key step toward reliable operation in changing real-world
environments with uncertainties. For example, consider a low-
cost mobile robot operating in an office-like environment with a
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Fig. 1. (a) This figure depicts a typical search tree in belief space, corre-
sponding to a very small problem with three actions U = {u1 , u2 , u3} and
two observations Z = {z1 , z2}. Each posterior belief (probability distribution)
branches into |U | number of priors and each prior belief branches into |Z|
posteriors, and thus, the tree grows exponentially in the search depth (referred
to as the curse of history). (b) This figure depicts the idea of using funnels (lo-
cal feedback controllers) in belief space that can break this exponential growth
by funneling a large set of posteriors into a precomputed beliefs (in red cir-
cles). Thus, a graph is formed in belief space with funnels as edges and the
precomputed beliefs as nodes. This graph grows linearly with the search depth.

changing obstacle map (e.g., office doors switch state between
open and closed), and responding to changing goals (tasks) as-
signed online based on user requests. Such changes in the obsta-
cle map or in the goal location often call for global replanning
to accommodate changes in the homotopy class of the optimal
solution. What makes the problem more challenging is that such
replanning has to happen online and fast in partially observable
environments with motion and sensing uncertainties.

In general, decision making and control under uncertainty
are ubiquitous challenges in many robotic applications. For an
autonomous robot to operate reliably, it needs to perceive sen-
sory measurements, infer its situation (state) in the environment,
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plan, and take actions accordingly. In partially observable envi-
ronments, where the state of the system cannot be determined
exactly (due to imperfect and noisy measurements), a filtering
module (e.g., Kalman filter) can provide an estimate of the state,
i.e., a probability distribution function (pdf) over all possible
system states. This pdf describing the localization uncertainty
is referred to as the belief or information-state. At each time
step, actions are chosen based on the robot’s belief. To find the
optimal policy that maps beliefs to actions, we cast the problem
in its principled form as a partially observable Markov decision
process (POMDP) problem [1], [2].

There are a number of challenges in dealing with POMDPs.
1) Curse of dimensionality [3] refers to the high dimen-

sions of the belief space. If the underlying robotic system
evolves in a discrete grid world with n cells, the cor-
responding belief space is an n-dimensional continuous
space.

2) Curse of history [3], [4] refers to the exponential growth
of the number of future outcomes in the search depth [see
Fig. 1(a)].

Methods such as [3]–[13] alleviate these issues and take
POMDPs to more challenging and realistic domains. In this
paper, we consider a class of POMDPs that commonly arise in
modeling the SLAP problem. The settings are similar to the ones
used in the KF-based localization literature [14], [15], such as

1) the system model is given as differentiable nonlinear
equations;

2) the state/action/observation spaces are continuous; and
3) belief is unimodal and well approximated by a Gaussian.
In addition to the above-mentioned challenges, when dealing

with physical systems, POMDPs need to cope with discrepan-
cies between real models and the models used for computation,
e.g., discrepancies due to changes in the environment map or
due to intermittent sensor/actuator failures. Dynamic replan-
ning under uncertainty is a plausible solution to compensate for
deviations caused by such discrepancies.

To enable an online replanning scheme for SLAP, we rely
on multi-query methods in belief space and specifically the
Feedback-based Information RoadMap (FIRM) method, dis-
cussed below. The main body of POMDP literature (sampling-
based methods in particular) propose single-query solvers, i.e.,
the computed solution depends on the system’s initial belief [8],
[16], [17]. Therefore, in replanning (from a new initial belief),
almost all the computations need to be reproduced, which limits
their usage in solving SLAP where dynamic replanning is re-
quired. However, multi-query methods, such as FIRM, provide
a construction mechanism, independent of the initial belief of
the system (Figs. 1(b) and 4), making them suitable methods
for SLAP. The original FIRM framework provides a reliable
methodology for solving the problem of motion planning under
uncertainty by reducing the intractable dynamic programming
(DP) to a tractable DP over the nodes of the FIRM graph. In this
paper, we extend our previous work on FIRM by proposing a
dynamic replanning scheme in belief space that enables online
replanning for real world applications in mobile robotics. This
extension leads to intelligent robot behaviors that provably takes
the solution closer to the optimal solution and guarantees that
success probability only increases.

In addition to the proposed algorithms, an emphasis of this
paper is on the implementation of the proposed SLAP solution
on a physical robot. We investigate the performance of the pro-
posed method and demonstrate its ability to cope with model
discrepancies, such as changes in the environment and large

deviations which can globally change the plan by changing the
homotopy class of the optimal solution. We believe these re-
sults lay the ground work for advancing the theoretical POMDP
framework toward practical SLAP applications and achieving
long-term robotic autonomy.

A. Related Work

Online replanning in belief space is an important capability
to solve the SLAP problem for two main reasons. First, belief
dynamics are usually more random than the state dynamics be-
cause the belief is directly affected by the measurement noise.
Therefore, a noisy measurement or spurious data association
can cause large changes in the belief. Second, in practical appli-
cations, discrepancies between real and computational models
or changes in the environment can cause the belief to occa-
sionally show off-nominal behaviors. Online replanning while
localizing equips the system with the ability to recover from
such situations.

Active localization: Solving the planning problem alongside
localization and mapping has been the topic of several recent
works (e.g., [18]–[21]). The method in [22] presents an approach
to uncertainty-constrained simultaneous planning, localization,
and mapping for an unknown environment. In [23], Carlone and
Lyons propose an approach to actively explore unknown maps
while imposing a hard constraint on the localization uncertainty
at the end of the planning horizon. Our work assumes the en-
vironment map is known, formulates the problem in its most
general form (POMDP), and focuses on online replanning in
the presence of obstacles which may possibly change over time.

General-purpose POMDP solvers: There is a strong body of
literature on general purpose POMDP solvers (e.g., [24]–[28]),
divided into offline and online solvers. Offline solvers [29] com-
pute a policy over the belief space (e.g., [3], [5]–[7]) and online
solvers [30] aim to compute the best action for the current belief
by creating a forward search tree rooted in the current belief.
In recent years, general-purpose online solvers have become
faster and more efficient (e.g., AEMS [31], DESPOT [32], ABT
[33], and POMCP [13]). However, direct application of these
methods to SLAP-like problems is a challenge due to expensive
simulation steps, continuous, high-dimensional spaces, and dif-
ficult tree pruning steps. We discuss these three challenges in
the following paragraphs.

Forward search methods rely on simulating the POMDP
model forward in time and creating a tree of possible scenar-
ios in future. At each simulation step (x′, z, c) ∼ G (x, u), the
simulator G simulates taking action u at state x and computes
the next state x′, observation z, and the cost c and constraints
of this transition. When dealing with Games (e.g., Go) or tradi-
tional POMDP problems (e.g., Rock Sample [30]), the forward
simulation step and cost computation are computationally very
inexpensive. However, in SLAP-like problems, computing costs
are typically orders of magnitude more expensive (e.g., comput-
ing collisions between the robot and obstacles).

The second challenge in applying tree-based methods to
SLAP is that the tree-based methods require the simulator to re-
visit the same belief many times to learn its value. However, in
SLAP-like problems with continuous state/action/observation
spaces, the chances of visiting the same belief are almost
zero. Even in the discretized version, the number of simula-
tion steps (x′, z, c) ∼ G (x, u) along the tree is of the order
ncoll = O(nb(|U ||Z|)d). For the problem in this paper, typical
values are in the order of: nb > 10 for the number of parti-
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Fig. 2. Example environments with many homotopy classes. Left figure is a
Voronoi graph around point obstacles. Right figure is a simple lattice around
obstacles. The number of paths from start to goal is in the order of gd , where
g is the branching factor of the graph, and d is the search depth. In the right
figure, even if we assume the robot can only go right and down directions in the
lattice, the number of paths would be in the order of 48 .

cles used to represent the belief for accurate collision checking;
d = 104 steps for path length (search tree depth), |U | = 502

and |Z| = 10010 for discretization of the 2-D, and 10-D control
and observation spaces. Thus, the chances of revisiting the same
belief in the discretized version of the problem are quite low.

Finally, unlike many traditional POMDP domains where the
domain structure (e.g., game rules) prunes a lot of tree branches,
pruning the search tree is much more challenging (if at all pos-
sible) in SLAP-like problems, where there is a terminal belief
to achieve, no discount factor, and strong dependence between
future costs and the past costs.

To handle these challenges, different methods limit the scope
of POMDPs to smaller classes, such as POMDPs with differen-
tiable models and Gaussian noise. The following include several
examples of such methods.

Local optimization-based methods: In these methods, the op-
timization variable is typically an open-loop sequence of actions
and the optimization converges to the local optimum around the
initial solution. The challenge with these methods (e.g., [34],
[35]) is that they require an initial trajectory. However, finding a
good initial solution could be as difficult as the original problem
depending on the environment and observation model. For ex-
ample, Fig. 2 shows environments with thousands of homotopy
classes and local minima. In contrast, the proposed method in
this paper does not require an initial solution, and is not sensi-
tive to local minima. Furthermore, typically the planning hori-
zon in the local optimization-based methods is short since the
computational complexity of the optimization grows (often su-
perlinearly) in the planning horizon. Local optimization-based
methods can be used in a Receding Horizon Control (RHC)
scheme as follows: At every step, a sequence of optimal actions
is computed within a limited horizon of T steps. Then, only the
first action is executed and the rest are discarded. The executed
action takes the system to a new point, from which a new se-
quence of optimal actions is recomputed within horizon T . This
process is repeated until the system reaches the goal region.
The RHC framework was originally designed for deterministic
systems and its extension to stochastic systems and belief space
planning is still an open problem. A direct approach is to re-
place the uncertain quantities (such as future observations) with
their nominal values (e.g., most likely observations), and then
treat the stochastic system as a deterministic one and use it in
an RHC framework (e.g., [34], [36]–[39]). Due to this approx-
imation and the limited optimization horizon, the system may
myopically choose good local actions but after a while may find
itself in a high-cost region.

Global sampling-based methods: To handle local minima,
methods like [16], [17], [40] extend the traditional deterministic
motion planning methods (e.g., PRM and RRT) to belief space.
The main challenge is that these belief space planners are single
query (the solution is valid for a given initial belief). Thus,
when replanning from a new belief, most of the computation
needs to be reproduced. In particular, when the planner needs to
switch the plan from one homotopy class to another, replanning
and finding the right homotopy class become challenging (see
Fig. 2). The proposed method in this paper can inherently deal
with changes in the homotopy class due to its multi-query graph
structure.

Application of POMDPs to physical robots: From an ex-
perimental point of view, a few recent works have focused on
applying belief space planning to real-world robots. Arne Siev-
erling and Brock [41] implement a belief planner on a mobile
manipulator with time of traversal as a cost metric. An inte-
grated task and motion planner, utilizing symbolic abstraction,
whose performance is demonstrated on a PR2 robot tasked with
picking and placing household objects is proposed in [42]. In
[43], Bowen and Alterovitz develop a stochastic motion plan-
ner and show its performance on a physical manipulation task,
where unknown obstacles are placed in the robot’s operating
space and the task-relevant objects are disturbed by external
agents. Bai et al. [11] extend the application of POMDP meth-
ods to autonomous driving in a crowd by predicting pedestrian
intentions. Marthi [44] applied a POMDP-based planner to nav-
igate a PR2 robot in an office-like environment. This paper
proposes an elegant way of incorporating environment changes
into the planning framework and can cope with changes in the
homotopy class. The main difference with our method is that
in [44] Marthi addresses the uncertainty in obstacles and as-
sume that the robot’s position in the map is perfectly known.
Compared to above methods, the work in this paper extends the
application of POMDPs to continuous state/action/observation
spaces with very long planning horizons. It further demonstrates
the real-time replanning capability in belief space with chang-
ing environment while incorporating accurate risk and collision
probabilities in the planning framework.

B. Highlights and Contributions

This paper extends our previous work in [45]. Compared to
[45], we discuss in detail the concept of rollout-based belief
space planning, policy execution, and present extensive simu-
lation and experimental results to demonstrate the performance
improvements made by using the proposed method. We also
present analyses that guarantee a lower execution cost and fail-
ure probability as compared to the nominal FIRM policy. The
main highlights and contributions of this paper are as follows.

Online belief planner to enable SLAP: We propose an online
planning method in belief space. The method lends itself to
the class of rollout-based methods [46] and extends them to
the belief space. Compared to belief space RHC methods, this
method is not limited to a horizon, does not get stuck in local
minima, and does not assume deterministic future observations.

Online switching between homotopy classes: In motion plan-
ning, a homotopy class of paths [47] refers to a set of paths that
can be deformed into each other by continuous transformation
(bending and stretching) without passing through obstacles (see
Fig. 2). A unique feature of the presented method is that it is
capable of updating the plan globally and online, even when the
homotopy class of the optimal solution has changed. This feature
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allows the proposed planner to work in changing environments
and cope with large deviations.

Selective stabilization policy: The proposed method su-
percedes a state-of-the-art method, FIRM [4], in performance,
success probability, and ability to cope with changing environ-
ments. It builds upon a FIRM and inherits the desired features
of the FIRM framework, such as robustness, scalability, and the
feedback nature of the solution. In addition, it significantly re-
duces the number of belief node stabilization (required in the
original FIRM method) by eliminating the unnecessary ones.
Thus, the proposed method can be viewed as FIRM with a se-
lective stabilization policy. In the original FIRM framework,
at every node the system needs to steer its sensory informa-
tion to reach the belief node (each graph node is a belief, i.e.,
a particular localization uncertainty). In this paper, however,
using an online local planning method, we achieve a locally
optimal tradeoff between stabilization to a node (i.e., explor-
ing the information space to reach the exact belief node) and
moving toward the goal (exploiting the gradient of local cost
function). As a result of this optimal exploration–exploitation
tradeoff, interesting behaviors emerge out of the algorithm with-
out encoding any heuristic. These behaviors (locally) optimally
trade-off information and energy. For example, consider a case
when the objective is to “reach a goal while minimizing the
probability of colliding with obstacles.” In that case, in the open
areas where there are no narrow passages, the system bypasses
the belief node stabilizations. It speeds up and does not waste
time gathering information because reducing its uncertainty in
obstacle-free regions does not have much benefit. However, once
it is faced with obstacles and narrow passages, it automatically
decides to perform stabilization until the uncertainty is small
enough to safely traverse the narrow passage. Fig. 3, shows this
phenomenon pictorially.

Performance guarantees: We provide lower bounds on the
performance of the method and show that in stationary environ-
ments, the performance and success probability of the proposed
method always exceed (or in the worst case are equivalent to)
those of the FIRM method.

Applications to physical systems: Among the set of meth-
ods that cope with continuous state/action/observation POMDP,
only a very small number of methods have been applied to physi-
cal systems due to their computational complexity when dealing
with real-world robotics problems. An important contribution of
this paper is to implement a continuous state/action/observation
POMDP solver on a physical robot in a real-world office-like
environment.

II. PROBLEM FORMULATION

In motion planning under uncertainty, we are looking for a
policy π that maps the available system information to an op-
timal action. Let xk ∈ X, uk ∈ U , and wk denote the system’s
state, control action, and motion noise at the kth time step. Let
us denote the state evolution model by xk+1 = f(xk , uk , wk ).
In a partially observable system, the system state is not per-
fectly known. Rather, the state needs to be inferred from noisy
measurements. Let us denote the sensor measurement (or ob-
servation) vector by zk ∈ Z at the kth time step and the mea-
surement model by zk = h(xk , vk ), where vk denotes sens-
ing noise. All the data that is available for decision making at
the kth time step is the history of observations and controls:
Hk = {z0:k , u0:k−1} = {z0 , z1 , . . . , zk , u0 , . . . , uk−1}.

System belief or information-state bk ∈ B compresses the
data history Hk into a conditional probability distribution over
all possible system states bk := p(xk |Hk ). In Bayesian filtering,
belief can be computed recursively based on the last action and
current observation bk+1 = τ(bk , uk , zk+1) [46], [14]:

bk+1 = αp(zk+1 |xk+1)
∫

X
p(xk+1 |xk , uk )bkdxk

=: τ(bk , uk , zk+1)

where α = p(zk+1 |Hk , uk )−1 is the normalization constant.
Once the belief is formed, a policy πk generates the next
action, i.e., uk = πk (bk ). The optimal policy πk is the so-
lution of a POMDP, which is intractable over continuous
state/action/observation spaces.

SLAP is the problem of online planning under uncertain robot
poses in a known environment with changing obstacles and goal
locations. SLAP entails dynamic risk assessment and planning
every time the localization module updates the probability dis-
tribution on the robot’s state, or every time the environment map
changes. We refer to the POMDP problem induced by SLAP, as
SLAP-POMDP.

SLAP-POMDP: In SLAP-POMDP, the system state is the
robot pose (e.g., location). In SLAP-POMDP, the state, action,
and observation spaces are continuous, and motion model f and
sensor model h are locally differentiable nonlinear functions.
The risk is critical throughout the entire plan, and hence, there
is no discount factor in SLAP-POMDP, as opposed to tradi-
tional POMDP problems. Instead, there exists a termination set
Bgoal ⊂ B such that c(b, u) = 0 for all b ∈ Bgoal. Risk typically
represents the probability of violating constraints Xobst, U const on
state (e.g., collision with obstacles) and actions (e.g., actuator
saturation).

SLAP problem: At each time-step, re-solve the SLAP-
POMDP from a new belief b0 based on the updated constraint
set Xobst and updated goal regions Bgoal

π(·) = arg min
Π

E

[ ∞∑
k=0

c(bk , πk (bk )) |Xobst, Bgoal

]

s.t. bk+1 = τ(bk , πk (bk ), zk ), zk ∼ p(zk |xk )

xk+1 = f(xk , πk (bk ), wk ), wk ∼ p(wk |xk , πk (bk ))

xk /∈ Xobst, uk /∈ U const

c(b, ·) = 0 ∀b ∈ Bgoal, c(b, ·) > 0 ∀b /∈ Bgoal. (1)

Following Kalman filter-based robot localization literature
(which are widely applied to physical robots), in this paper,
we restrict our scope to Gaussian beliefs. We also assume there
is an upper bound on the magnitude of environment changes
at each step. More precisely, when Xobst is updated, there is
an upper bound on the number of affected graph edges [see
Fig. 1(b)].

III. FIRM OVERVIEW

In this section, we briefly describe the abstract framework of
feedback-based information RoadMap (FIRM) followed by a
description of its concrete implementation in our experiments.
We refer the reader to [4], [48] for more in-depth descriptions.

FIRM is a framework designed to reduce a class of intractable
continuous POMDPs to tractable problems by generating a rep-
resentative graph, Probabilistic RoadMap (PRM), in the belief
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Fig. 3. A representative scenario depicting how rollout-based planner achieves higher performance compared to the standard FIRM algorithm while guaranteeing
robustness. The nine scenes depict different stages of task execution as the robot moves from the start to goal location. (a) Simple scenario with a FIRM roadmap,
robot, and environment as depicted. (b) Rollout policy is computed periodically. Four candidate edges (dashed lines), including the current edge, are compared.
(c) Clutter-free regions, rollout takes a shorter route (edge 3), increasing performance and speed while loosing certainty (i.e., skipping node stabilization).
(d) While completing edge 3, the new rollout further cuts down task execution time by taking shorter route through a newly computed rollout edge 2. (e) Robot is
approaching the cluttered region. As needed, the planner will slow the robot down to trade performance with certainty. (f) Stabilization is performed because the
reduced localization uncertainty (smaller covariance) leads to higher success probability in this case. (g) Stabilization occurs again as robot is still passing through
the narrow passage. (h) New rollout connections allow bypassing stabilization. (i) Robot is approaching the goal.

space. Similar to PRMs [49] where the solution path is a con-
catenation of local paths, in FIRM, the solution policy is a
concatenation of local policies. Every node in a FIRM graph
is a small region B = {b : ‖b − b̀‖ ≤ ε} around a sampled be-
lief b̀. We denote the ith node by Bi and the set of nodes by
V = {Bi}. Each edge in a FIRM graph is a closed-loop lo-
cal controller whose goal is to steer the belief into the target
node of the edge. An edge controller connecting nodes i and
j is denoted by μij and the set of edges by M = {μij}. An
analogy for each local controller is a “funnel in belief space.”
As depicted in Fig. 4, each funnel steers the set of beliefs to
a milestone belief. Further, using the slide-funnel composition,
we can create sparse graphs of funnels as shown in Fig. 4. A
basic instantiation of the funnel in belief space is a stationary
linear quadratic Gaussian (SLQG) controller (see [4, Appendix
C]). A basic instantiation of the slide in belief space is a time-
varying linear quadratic Gaussian (TV-LQG) controller (see [4,
Appendix B]).

Given a graph of these local controllers [Fig. 4(e)], we can
define policy πg on the graph as a mapping from graph nodes to
edges; i.e., πg : V → M. Πg denotes the set of all such graph
policies. Having such a graph in belief space, we can form a
tractable POMDP on the FIRM graph (so-called FIRM MDP):

πg ∗
= arg min

Πg
E

∞∑
n=0

Cg (Bn, πg (Bn )) (2)

where Bn is the nth visited node and μn is the edge taken at
Bn . Cg (B,μ) :=

∑T
k=0 c(bk , μ(bk )) is the generalized cost of

taking local controller μ at node B centered at b0 . We incorporate
the failure (collision) set in planning by adding a hypothetical
FIRM node B0 to the list of FIRM nodes. Since the FIRM
MDP in (2) is defined over a finite set of nodes, it can be solved
by computing the cost-to-go for all graph nodes through the
following DP problem:

Jg (Bi)=min
μ

{
Cg (Bi, μ) +

N∑
γ=0

P g (Bγ |Bi, μ)Jg (Bγ )

}
(3)

and πg (Bi) = μ∗, where μ∗ is the argument of above minimiza-
tion and P g (Bγ |Bi, μ) is the probability of reaching Bγ from
Bi under μ. The failure and goal cost-to-go (i.e., Jg (B0) and
Jg (Bgoal)) are set to a suitably high positive value and zero,
respectively.

Collision (failure) probability of FIRM starting from a given
node Bi can be computed [51] as

P (Failure|Bi, πg ) = 1 − ΓT
i (I − Q)−1Rgoal (4)

where Γi is a column vector of zeros with only the ith el-
ement set to one, Q is a matrix, whose (i, j)th element is
Q[i, j] = P (Bi |Bj , πg (Bj )), and Rgoal is a column vector,
whose jth entry is Rgoal[j] = P (Bgoal|Bj , πg (Bj )). It can be
shown that FIRM is an anytime algorithm [51], i.e., in a given
static environment, by increasing the number of nodes, the cost
(e.g., the failure probability) will go down. As will be discussed
Section III-A, FIRM’s failure probability will be an upper bound
for the failure probability of the proposed planner.
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Fig. 4. Extension of sequential composition methods [50] to belief space.
(a) Funnel in belief space that collapses a set of Gaussian distribution to a
particular Gaussian distribution, referred to as the graph node or milestone.
The 2-D projection denotes the belief space, where each point represents a full
Gaussian distribution. The projection of the mouth of funnel is analogous to its
region of attraction in belief space. (b) Chain of funnels to guide the belief toward
a goal. (c) Graph of funnels, where the tip of multiple funnels can fall into the
region of attraction of a single funnel. (d) For a sparse set of funnels, one can use
tracking controllers (slides) to create the funnel-slide-funnel structure. (e) Graph
of funnel-slide-funnel: a FIRM graph. (a) Belief funnel. (b) Funnel chain. (c)
Funnel graph. (d) Funnel-slide-funnel. (e) FIRM: graph of funnel-slide-funnel.

A. Concrete FIRM Instance in Our Implementation

Here, we discuss the concrete realization of the FIRM graph
constructed for conducting the experiments in this paper.

One-step-cost: Although the objective function can be gen-
eral, the cost function we use in our experiments includes the
localization uncertainty, control effort, and elapsed time

c(bk , uk ) = ζp tr(Pk ) + ζu‖uk‖ + ζT (5)

where tr(Pk ) is the trace of estimation covariance as a measure
of localization uncertainty. The norm of the control signal ‖uk‖
denotes the control effort and ζT is present in the cost to penalize
each time lapse. Coefficients ζp , ζu , and ζT are user-defined task-
dependent positive scalars to combine these costs to achieve
a desirable behavior. In the presence of constraints (such as
obstacles in the environment), we assume the task fails if the
robot violates these constraints (e.g., collides with obstacles).
Therefore, collision and goal belief are terminal states such
that Jg (B0) = Jg (Failure) is set to a suitably high cost-to-go
and Jg (Bgoal) = 0. Note that typically the one-step-cost in (5)
is defined in the state space (i.e., cost of taking action u at
state x). While our cost can be written as a state space cost,
writing it directly in belief space better demonstrates the active
localization aspect of the work (in the sense of minimizing the
uncertainty in the localization belief) along the plan.

Steering localization covariance: To construct a FIRM graph,
we first need to sample a set of stabilizers (belief steering func-
tions). Each stabilizer is a closed-loop controller, whose role is to
drive the localization uncertainty (or belief) to a FIRM node. A
stabilizer consists of a filter and a separated controller [52]. The

filter governs the belief evolution and the separated-controller
generates control signals based on the available belief at each
time step [52]. To design these steering laws, we first sample a
set of points V = {vi} in the robot’s state space. Then, for each
point, we construct a stabilizer (i.e., funnel) [4]. In the vicinity of
each node vj , we rely on the Stationary Kalman Filter (SKF) as
the steering filter (which is constructed by linearizing the system
about the target point vj ). It can be shown that for an observ-
able system, the covariance under the jth SKF approaches to
covariance P+ j

s , which can be efficiently computed by solving
a corresponding discrete algebraic Riccati equation [53].

Steering localization mean: While steering belief toward node
Bj , separated-controller μij is responsible for generating the
control signals based on the available belief, i.e., uk = μij (bk ).
The iRobot Create (used in our experiments) is a nonholonomic
robot and is modeled as a unicycle (see Section VI-A2). Thus, to
steer the estimation mean toward the target node vj , one needs to
use controllers designed for stabilizing nonholonomic systems
(e.g., [54]–[56]). However, the randomness of the estimation
mean (resulting from randomness of observations) calls for a
controller that can perform such stabilization under uncertainty.
To this end, we implemented different controllers including
polar coordinate-based controller [57] and dynamic feedback
linearization-based controller [58]. Observing the behavior of
different controllers, we adopted a variant of the Open-Loop
Feedback Control (OLFC) scheme [46] for stabilization pur-
poses. In this variant of OLFC, for a given vj , we compute an
open-loop control sequence from the current estimation mean
to vj . Then, we apply a truncated sequence of the first l controls
(l = 5 in our experiments).1 This process repeats every l steps
until we reach the vicinity of vj .

FIRM graph: Associated with each sample vj , we can define
the belief node b̀j ≡ (vj , P+ j

s ). Defining a FIRM node as a ball
around this point Bj = {b : ‖b − b̀j‖ ≤ ε}, we can steer the
Gaussian localization uncertainty to this ball with combination
of OLFC and SKF. Accordingly, we sample N FIRM nodes
{Bj}N

j=1 .
The SKF/OLFC combination between nodes i and j forms the

FIRM edge (local controller) and is denoted by μij . We connect
each node to its k-nearest neighbors. The set of constructed
edges is denoted by M = {μij}.

Then, we compute and store costs and transition probabilities
associated with each edge using offline simulations. Finally, we
solve the DP in (3) to get the optimal graph cost-to-go values
Jg (Bi) and policy πg (Bi) for all i.

IV. SLAP VIA ROLLOUT-BASED DYNAMIC REPLANNING

IN BELIEF SPACE

As discussed in Section II, SLAP in this paper refers to the
problem of (re)planning dynamically every time the localiza-
tion module updates the probability distribution on the robot’s
state. In this section, we develop an online replanning method
in belief space by extending rollout policy methods [46] to the
stochastic partially observable setting. In particular, we discuss
replanning in the presence of changes in the environment and
goal location, large deviations in the robot’s location, and dis-
crepancies between real and computational models. We show
that the proposed method increases the performance of FIRM
by enabling selective stabilization.

1Only one control (i.e., l = 1) is not enough due to the nonholonomicity of
the system.
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To make the connection with the rollout policy, we restate the
POMDP problem in a more general setting of the time-varying
policy

π0:∞(·) = arg min
Π0 :∞

∞∑
k=0

E [c(bk , πk (bk ))]

s.t. bk+1 = τ(bk , πk (bk ), zk ), zk ∼ p(zk |xk )

xk+1 = f(xk , πk (bk ), wk ), wk ∼ p(wk |xk , πk (bk )). (6)

In (6), we seek a sequence of policies π0:∞ = {π0(·), π1(·),
π2(·), . . .}, where πk maps belief bk to the optimal action uk . Πk

is the space of all possible policies at time step k, i.e., πk ∈ Πk .
In the infinite horizon case, it can be shown that the solution is a
stationary policy πs , i.e., π1 = π2 = · · · = πs and the problem
is reduced to (1). However, we keep the time-varying format for
reasons that will be made clear below.

As discussed earlier, in the SLAP problem, one needs to
re-solve this POMDP “online” every time the localization pdf
is updated. To handle the computational intractability of the
continuous POMDP in (6), we reuse computations in an efficient
way, as will be explained in the following section. Here, we first
start by discussing the general form of repeated online solutions
as an RHC scheme.

RHC in belief space: Receding horizon control (also referred
to as rolling horizon or model predictive control) was originally
designed for deterministic systems [59] to cope with model dis-
crepancies. For stochastic systems, where the closed-loop (feed-
back) control law is needed, formulation of the RHC scheme is
up for debate [37], [60]–[62]. In the most common form of RHC
for stochastic systems [46], the system is approximated with a
deterministic one by replacing the uncertain quantities with their
typical values (e.g., maximum likelihood value.) In belief space
planning, the quantity that injects randomness in belief dynam-
ics is the observation. Thus, one can replace the random obser-
vations zk with their deterministic maximum likelihood value
zml , where zml

k := arg maxz p(zk |xd
k ) in which xd is the nom-

inal deterministic value for the state that results from replacing
the motion noise w by zero, i.e., xd

k+1 = f(xd
k , πk (bd

k ), 0). The
deterministic belief bd is then used for planning in the receding
horizon window. At every time step, the RHC scheme performs
a two-stage computation. At the first stage, the RHC scheme for
deterministic systems solves an open-loop control problem (i.e.,
returns a sequence of actions u0:T ) over a fixed finite horizon T
as follows:

u0:T = arg min
U0 :T

T∑
k=0

c(bd
k , uk )

s.t. bd
k+1 = τ(bd

k , uk , zml
k+1)

zml
k+1 = arg max

z
p(z|xd

k+1) and xd
k+1 = f(xd

k , uk , 0).

(7)

In the second stage, RHC executes only the first action u0 and
discards the remaining actions in the sequence u0:T . However,
since the actual observation is noisy and is not equal to the zml ,
the belief bk+1 will be different from bd

k+1 . Subsequently, RHC
performs these two stages from the new belief bk+1 . In other
words, RHC computes an open-loop sequence u0:T from this
new belief, and this process continues until the belief reaches the
desired belief location. Algorithm 1 recaps this procedure. State-
of-the-art methods, such as [63] and [39], utilize RHC in belief
space. Toit and Burdick [39] refer to the method as partially

closed-loop RHC (PCLRHC) as it exploits partial information
about future observations (i.e., zml) and does not ignore them.

A known shortcoming of the stated RHC formulation is its
limited horizon, which might lead the system to local minima by
choosing actions that guide the robot toward “favorable” states
(with low cost) in the near future followed by a set of “unfa-
vorable” states (with a high cost) in the long run. To improve
the basic RHC, different variants have been proposed including
the “rollout policy” [46]. Here, we discuss how they can be
extended to and realized in belief space.

Rollout policy in belief space: Another class of methods that
aims to reduce the complexity of the stochastic planning prob-
lem in (6) is the class of rollout policies [46], which are more
powerful than the described version of RHC in the following
sense: First, they do not approximate the system with a deter-
ministic one. Second, they avoid local minima using a subop-
timal policy that approximates the true cost-to-go beyond the
horizon. This policy is referred to as the “base policy” and de-
noted by J̃ . Formally, at each step of the rollout policy scheme,
the following closed-loop optimization is solved:

π0:T (·) = arg min
Π0 :T

E

[
T∑

k=0

c(bk , πk (bk )) + J̃(bT +1)

]

s.t. bk+1 = τ(bk , πk (bk ), zk ), zk ∼ p(zk |xk )

xk+1 = f(xk , πk (bk ), wk ), wk ∼ p(wk |xk , πk (bk )). (8)

Then, only the first control law π0 is used to generate the con-
trol signal u0 and the remaining policies are discarded. Similar
to the RHC, after applying the first control, a new sequence of
policies is computed from the new point. The rollout algorithm
is described in Algorithm 2.

Although the rollout policy in belief space efficiently reduces
the computational cost compared to the original POMDP prob-
lem, it is still formidable to solve since the optimization is
carried out over the policy space. Moreover, there should be a
base policy that provides a reasonable cost-to-go J̃ . We now
proceed to propose a rollout policy in belief space that exploits
the FIRM-based cost-to-go.
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A. Enabling SLAP via FIRM-Based Rollout in Belief Space

In this section, we discuss how a rollout policy in belief space
(and hence SLAP) can be realized using the FIRM framework.
As explained earlier, in FIRM, the system transitions between
two nodes2 Bi and Bj (centered at sampled beliefs bi and bj )
using a local controller μij . Global-level decision-making only
occurs when the system is in a FIRM node (e.g., region Bi) and
for the rest of the time, local controls are executed (e.g., μij ).
In FIRM-based rollout, we raise this limitation by forcing the
system to globally replan at every time step to enable SLAP.
Specifically, denoting the system belief at time step t by bt , we
rely on the following procedure. At each time step t:

1) We connect bt to all its neighboring FIRM nodes (in ra-
dius R) using suitable local controllers μtj . These local
controllers are designed in the same way as FIRM edges.

2) We evaluate the transition costs C(bt , μ
tj ) and the prob-

ability of landing in nodes Bγ under the influence of the
controller μtj , i.e., P (Bγ |bt , μ

tj ).
3) We evaluate the best edge outgoing from bt by solving

j∗=arg min
j

{
C(bt , μ

tj )+
N∑

γ=0

P (Bγ |bt , μ
tj )Jg (Bγ )

}

(9)

where Jg (Bγ ) is the nominal cost-to-go under the FIRM
policy from node Bγ and Jg (B0) is the failure cost-to-go
as discussed in Section III.

4) We choose μtj ∗
as the local controller at bt if the ex-

pected success probability exceeds the current one. In
other words, we only switch from the current local con-
troller (i.e., μij ) to μtj ∗

if the following condition holds:

E[success|bt , μ
tj ∗

] > E[success|bt , μ
tj ] (10)

where expected success probability is

E[success|bt , μ
tα ]=

N∑
γ=1

P (Bγ|bt , μ
tα )P success(Bγ )

(11)

and P success(Bγ ) = ΓT
γ (I − Q)−1Rgoal is the probability

of success for reaching the goal from FIRM node Bγ

under the nominal FIRM policy [see (4)].
Algorithm 3 describes planning with the proposed rollout

process. We split the computation to offline and online phases.
In the offline phase, we carry out the expensive computation of
graph edge costs and transition probabilities. Then, we handle
pose deviations and the changes in the start/goal location by
repeated online replanning while reusing offline computations.

In the following, we discuss how Algorithm 3 provides a
tractable variant of (8). Following the concepts and terminology
in [46], here, the FIRM policy plays the role of the base policy;
FIRM’s cost-to-go values are used to approximate the cost-to-go
beyond the rollout horizon. Given a dense FIRM graph, where
nodes partition the belief space (i.e., ∪iB

i = B), the belief at
the end of rollout [bT +1 in (8)] will fall into a FIRM node with
a known cost-to-go. With a sparse FIRM graph, where nodes
do not cover the entire belief space, we design local policies
that drive the belief into a FIRM node at the end of horizon.
However, since the belief evolution is random, reaching a FIRM

2In the cartoon in Fig. 4, it looks like Bj is the sole destination for μij .
However, in dense graphs the belief under μij might be absorbed by a different
funnel before reaching Bj . The summation over γ in the following equations
takes this consideration into account.

node at deterministic time horizon T may not be guaranteed.
Therefore, we propose a new variant of rollout method with a
random horizon T as follows:

π0:∞(·) = arg min
Π̃

E

[
T∑

k=0

c(bk , πk (bk )) + J̃(bT +1)

]

s.t. bk+1 = τ(bk , πk (bk ), zk ), zk ∼ p(zk |xk )
xk+1 = f(xk , πk (bk ), wk ), wk ∼ p(wk |xk , πk (bk ))

bT +1 ∈ ∪jB
j (12)

where for bT +1 ∈ Bj , we have

J̃(bT +1) = Jg (Bj ). (13)

Π̃ is a restricted set of policies under which the belief will
reach a FIRM node in finite time. In other words, if π ∈ Π̃ and
π = {π1 , π2 , . . .}, then P (bT +1 ∈ ∪jB

j |π) = 1 for finite T .
Thus, the last constraint in (12) is redundant and automatically
satisfied for suitably constructed Π̃. Also, the FIRM-based cost-
to-go Jg (·) plays the role of the cost-to-go beyond the horizon
[see Eq. (13)].

Note that based on Algorithm 3, we can provide guarantees
on the performance of the proposed method. Before formally
stating the results, recall that at each instance of rollout compu-
tation, the current belief bt is added as a virtual node Bvirtual

t to
the FIRM graph to generate the augmented FIRM graph Ga

t . A
virtual node being defined as a temporary node with no incom-
ing edges. Virtual nodes are removed from the graph as soon as
the system departs their vicinity.
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Proposition 1: For a given static map, the performance
and success probability of the FIRM-Rollout policy is lower
bounded by the nominal FIRM policy at any belief state during
execution of the planner.

Proof: See [64] for the proof.
Remark: If the desired factor was merely the success prob-

ability, one can ignore the cost-to-go comparison condition in
Algorithm 3 and only maximize the success probability.

In addition to improving the performance while not compro-
mising on the safety, the rollout procedure is particularly helpful
in handling the changes in the environment map. We discuss this
aspect in Section IV-C.

B. Complexity Analysis

In this section, we analyze the computational complexity of
the offline and online phase of the proposed algorithm.

Offline phase: We assume the environment is a hypercube
[0, w]d . For constructing the offline policy on a k-regular graph
with N nodes, we have to simulate kN edges offline. Let us de-
note the number of particles describing belief by noff

b . Assuming
a fixed velocity 1 m/s on edges, and assuming simulation steps
occur at every Δt seconds, the number of simulation calls (in-
cluding collision checks) is ncoll =

∑kN
s=1 noff

b Δt−1 ls , where ls
is the length of the sth edge.

Assuming a uniform distribution of the sampled points (in the
sense of infinity norm) in the configuration space, the density
of points is ρ = Nw−d . Accordingly, the dispersion [65], [66]
of the sampled points is δ = wN−d−1

. Assuming all edges have
equal length (in the l∞-norm sense), the edge length of the
underlying PRM (over which FIRM has been built) is ls = δ =
w d
√

N
−1

ncoll = (noff
b Δt−1)wkN 1−d−1

. (14)

Online phase: In the online phase, we connect each node to
all nodes in the neighborhood of radius R (in infinity norm).
Thus, the size of neighboring area for connection is Rd , which
encompasses Rd ∗ ρ neighboring points. For R = rδ, it will
encompass rd points. Thus, we have rd new edges in the online
phase. It can be shown that the length of (i + 1)d − id of these
edges is in the range iδ < edgeLength < (i + 1)δ.

For all edge lengths between iδ < ls = edgeLength < (i +
1)δ, let us approximate ls by i+δ, where i ≤ i+ ≤ i + 1. Then,
the sum of the length of all new edges is

Ls =
rd∑

s=1

ls =
r∑

i=1

id∑
s=(i−1)d +1

ls =δ

r∑
i=1

((i)d − (i − 1)d − 1)i+ .

Let us denote the number of particles describing the belief by
nb . The number of simulation calls (including collision checks)
is

ncoll = nbΔt−1Ls

= nbΔt−1 d
√

N−1w
R d

√
N w−1∑

i=1

((i)d − (i − 1)d − 1)i+ .

Upper/lower bounds on the number of collision checks can be
obtained by setting i+ to its upper and lower bounds, i.e., i + 1
and i. To gain further insight on the complexity, let us assume
i+ is a constant (i.e., all edge lengths are the same) and set it to
its maximum value i+ = R d

√
Nw−1 . Then, the upper bound on

collision checks n+
coll is

n+
coll = (nbΔt−1wN−d−1

)(R d
√

Nw−1)

× [(R d
√

Nw−1)d − R
d
√

Nw−1 ]

= nbΔt−1w−dRd+1N − nbΔt−1w−1R2 d
√

N. (15)

Given this upper-bound on the computation time and given uni-
form grid sampling strategy, the online computation time grows
sublinearly with the number of underlying FIRM nodes N in
the worst case. Also, for a given dimension, the online compu-
tation time is polynomial in the connection radius R. By remov-
ing the dimension from the equation and extending the results
to random sampling, we can write the first term of the above
equation as

n+
coll = (nbΔt−1)RV ρ

where ρ is the density of samples in the environment, V is the
volume of the connection neighborhood, and R is the radius of
the connection neighborhood.

C. Enabling SLAP in Changing Environments

In this section, we discuss the ability of the proposed planner
to handle the changes in the obstacle map. We focus on a chal-
lenging case, where changes in the obstacle map are persistent
and can possibly eliminate a homotopy class of solutions. Doors
are an important example of this class. If the robot observes a
door is closed (which was expected to be open), it might have
to globally change the plan to get to the goal from a different
passage. This poses a challenge to the state-of-the-art methods
in the belief space planning literature.

To handle such changes in the obstacle map and replan ac-
cordingly, we propose a method for lazy evaluation of the gen-
erated feedback tree, referred to as “lazy feedback evaluation”
algorithm, inspired by the lazy evaluation methods for PRM
frameworks [67]. The basic idea is that at every node the robot
reevaluates only the next edge (or the next few edges up to a fixed
horizon) that the robot will most likely take. By re-evaluation,
we mean it needs to recompute the collision probabilities along
these edges. If there is a significant change (measured by α in
Algorithm 4) in the collision probabilities, the DP problem is re-
solved and new cost-to-go values are computed. Otherwise, the
cost-to-go values remain unchanged and the robot keeps follow-
ing its rollout-policy. Such lazy evaluation (computing the colli-
sion probabilities for a single edge or a small number of edges)
can be performed online. The method is detailed in Algorithm 4.

Remark: Another challenge with these persistent changes is
that they stay in the memory. Imagine a case where the robot
is in a room with two doors and the goal point is outside the
room. Suppose that after checking both doors, the robot realizes
they are closed. To solve such cases, the door state is reset to
“open” after a specific amount of time to persuade the robot to
recheck the state of doors. We further discuss the concept of the
“forgetting time” in the experiments section.

It is important to note that it is the particular structure of
the proposed planner that makes such replanning feasible on-
line. The graph structure of the underlying FIRM allows us
to locally change the collision probabilities in the environment
without affecting the collision probability of the rest of the graph
[i.e., properties of different edges on the graph are independent
of each other; see Figs. 4 and 1(b)]. Such a property is not
present in the state-of-the-art sampling-based belief space plan-
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ners (e.g., [16], [17]), where the collision probabilities and costs
on all edges are dependent on each other and hence need to be
recomputed.

V. SIMULATION RESULTS

In this section, we demonstrate the performance of the method
in simulation. The robot is tasked to go from a start location to
multiple goal locations sequentially in an obstacle-laden envi-
ronment with narrow passages and asymmetrically placed land-
marks.

Motion model: The state of the robot at time k is denoted by
xk = (xk , yk , θk )T (2-D position and the heading angle). We
denote the control as uk = (vx,k , vy ,k , ωk )T and the process
noise by wk = (nvx

, nvy
, nω )T ∼ N (0,Qk ). Let f denote the

kinematics of the robot such that xk+1 = f(xk , uk , wk ) = xk +
ukδt + wk

√
δt.

Observation model: We use a range-bearing landmark-based
observation model. Each landmark has a unique fully observable
ID. Let iL be the location of the ith landmark. The displacement
vector id from the robot to iL is given by id = [idx , idy ]T :=
iL − p, where p = [x, y]T is the position of the robot. There-
fore, the observation iz of the ith landmark can be de-
scribed as iz = ih(x, iv) = [‖id‖, atan2(idy , idx) − θ]T + iv.
The observation noise is assumed to be zero-mean Gaus-
sian such that iv ∼ N (0, iR), where iR = diag((ηr‖id‖ +
σr

b )2 , (ηθ‖id‖ + σθ
b )2). The measurement quality decreases as

the robot gets farther from the landmarks and the parameters
ηr and ηθ determine this dependency. σr

b and σθ
b are the bias

standard deviations.
Environment and scenario: The environment in Fig. 5(a) rep-

resents a 2-D office space measuring 21 m × 21 m. The robot
is a disk with diameter 1 m. There are two narrow passages P1
and P2 with high collision probability. The narrow passages are
1.25 m wide; thus, offering a very small clearance for the robot
to pass through. The robot is placed at starting location A and
tasked to visit four different locations (B, C, D, and E) in four

Fig. 5. (a) Simulation environment: landmarks (black diamonds) and obsta-
cles (gray polygons). The locations of interest that the robot is tasked to visit are
marked by red crosses. The two narrow passages P1 and P2 represent the regions
of high collision probability (risky) due to the small clearance. (b) Underlying
FIRM roadmap: edges (grey lines), nodes (cyan disks), covariance of the FIRM
nodes (dashed ellipses).

sequential segments: 1) A → B; 2) B → C; 3) C → D; and 4)
D → E. We compare the performance of the standard FIRM
with the proposed rollout-based method.

A. Planning With Standard FIRM

First, we construct the FIRM roadmap offline [see Fig. 5(b)].
FIRM nodes: The roadmap is constructed by uniformly sam-

pling configurations in the free space. Then, corresponding to
each configuration node, we create a FIRM node (belief) by fol-
lowing the procedure in Section III-A. In short, we linearize the
system dynamics and sensor model around the sampled config-
uration point. We create a Kalman Filter corresponding to this
local linear system and find its reachable belief by solving the
corresponding Riccati equation. At each node, there exists a sta-
bilizing controller which locally drives all beliefs to the belief
node.

FIRM edges: The edges of the FIRM roadmap are generated
by first finding valid (collision free) straight line connections
between neighboring nodes and then generating edge controllers
which drive the belief from the starting belief of the edge to the
vicinity of the target belief of the edge. For each edge in the
graph, we run Monte Carlo simulations to compute the expected
execution cost and transition probability. The constructed FIRM
roadmap is stored for use in the online rollout phase.

Online phase: In the online phase, the planner receives a query
(i.e., starting and goal configuration). These configurations are
added to the existing roadmap by computing the appropriate
stationary belief, stabilizer, and edge controllers. Since this con-
struction preserves the optimal substructure property (i.e., edges
are independent of each other; see Fig. 4 and 1(b)), we can solve
DP on the graph for the given goal location to construct the feed-
back tree.

FIRM feedback tree: The solution of the DP problem (i.e., πg ),
is visualized with a feedback tree. Recall that πg is a mapping
(look-up table) that returns the next best edge for any given
graph node. The feedback tree is rooted at the goal node. For
each node, the feedback tree contains only one outgoing edge
(μ = πg (Bi)) that pulls the robot toward the goal.

Most-likely path (MLP): The most likely path is defined as
a path followed by the FIRM feedback if there was no noise
(i.e., it is a tree branch that connects start to goal.) Note that the
actual solution (generated by FIRM) can be arbitrarily different
from the MLP due to noise.
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Fig. 6. Segment 1 of policy execution with FIRM, starting at A and going to
B. The locations A and B are marked in Fig. 5(a). (a) Feedback tree (green) for
goal location B , robot (blue disk), and initial belief (red). (b) Most likely path
(purple) under FIRM from A to B.

Fig. 7. Segment 2 (B → C ) of policy execution with FIRM. (a) FIRM feed-
back for goal location C. (b) MLP (purple) under FIRM from B to C.

In segment 1 (A → B), the planner computes the feedback
tree [see Fig. 6(a)] rooted in B. Fig. 6(b) shows the MLP. In
this case, the noise is not high enough to change the homotopy
class, and the robot is close to the MLP. To reach the goal, the
robot follows edge controllers returned by the feedback policy
and stabilizes to all FIRM nodes along the path. Once the robot
reaches B, we submit a new goal C. A new feedback tree is
computed online rooted in C [see Fig. 7(a)], with MLP shown in
Fig. 7(b). We follow a similar procedure to accomplish segments
C → D and D → E.

B. Planning With the Proposed Method

For segment 1 (A → B), as before, we begin with the un-
derlying FIRM roadmap constructed offline and compute the
feedback tree [see Fig. 6(a)]. However, when rollout planner
follows the feedback tree, a different behavior emerges. At each
time step (or more generally every Trollout seconds), the planner
connects the current robot belief to neighboring FIRM nodes in
radius R (i.e., the planner locally generates edge controllers
with their associated cost and transition probability). Then, the
planner checks which connection provides the lowest sum of
the edge-cost and cost-to-go from its landing node as in Eq. (9).
The connection with the lowest sum is chosen as the next edge
to follow. Fig. 8(a) shows the planner checking connections (red
edges) locally to neighboring FIRM nodes.

An important behavior emerges in segment 1. As the robot
proceeds, the rollout is able to find a shorter path through the
relatively open area by skipping unnecessary stabilizations [see

Fig. 8. Segment 1 with rollout: Starting at A and going to B. (a) Robot checks
new connections with neighbors (red). MLP under the nominal FIRM feedback
is in purple. (b) Rollout guides the robot away from the MLP to a shorter and
faster path (green). The new path is in a different homotopy class. (c) Robot
approaches narrow passage P2 through a more direct path as compared to the
MLP. (d) Robot stabilizes at a few FIRM nodes while passing through the narrow
passage. (e) Robot approaches goal location B. (f) Rollout path is shorter and
faster than the FIRM’s MLP.

Figs. 8(b) and (c)]. As the robot traverses the narrow passage
P2, the rollout realizes “stabilizing” to the FIRM node is the
best option as it concludes it is better to reduce the uncertainty
to a safe level before proceeding through the narrow passage
[see Fig. 8(d)]. Eventually, the robot reaches location B through
the path as marked in green in Fig. 8(f). Rollout gives the robot
a distinct advantage over the nominal FIRM plan as it guides the
robot through a shorter and faster route. Furthermore, it should
be noted that although the last part of the two paths (after ex-
iting the narrow passage) look similar, they differ significantly
in the velocity profiles. Along the purple path, the robot sta-
bilizes to each and every FIRM node. But, along the green
path (rollout), the robot maintains a higher average velocity by
skipping unnecessary stabilizations. The robot performs full or
partial stabilization only when the gained information (reduced
uncertainty and risk) is necessary to complete the mission.
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Fig. 9. Asymmetric costs and random execution noises. (a) Segment 3 (C →
D). (b) Segment 4 (D → E).

Fig. 10. Performance comparison between the original FIRM and proposed
planner on 50 runs. (a) Execution cost for FIRM rises faster than the cost of
the rollout-based policy. (b) Number of belief nodes that the robot stabilizes to,
during plan execution, is consistently lower for the rollout.

Similar behaviors are observed when completing segments 2
(B → C), 3 (C → D), and 4 (D → E). Fig. 9 shows final paths
for segments 3 and 4. We observe different levels of stabilization
and different path shapes when passing through passage P2 in
segments 3 and 4. This is due to asymmetric distribution of
information and risk in the environment.

C. Analysis of Simulation Results

In this section, we discuss the statistical analysis for the
presented simulation results by running the planner multiple
times. The results show that the proposed method significantly
increases the performance of the standard FIRM implementa-
tion while preserving its robustness and scalability.

Cost of execution: We recorded the amount of localization un-
certainty (trace of covariance) along the robot’s path. Fig. 10(a)
shows the cumulative version of this cost on 50 runs for the
same task under the rollout-based planner and standard FIRM.
We note that the cost for the rollout based policy rises slower
than the cost for FIRM, and as the planning horizon increases,
rollout offers increasing returns in performance.

Selective stabilization: Node stabilization makes FIRM ro-
bust and scalable while maintaining the optimal substructure
property on the graph (via edge independence; see Fig. 4). Al-
though the stabilization allows the FIRM to provide certain guar-
antees, it adds stabilization time and cost at each node to the
time and cost of the mission. The rollout-based planner brings a
higher level of intelligence to the process of node stabilization.
Rollout performs stabilization when required and bypasses it
when possible. Bypassing the stabilization allows the robot to
complete the task faster and with less cost. Fig. 10(b) shows the
number of nodes the robot has stabilized to on 50 different runs.
In this example, the robot stabilizes to ∼45 nodes under FIRM

compared to ∼10 nodes under the rollout-based planner (∼75%
reduction), while the difference is growing as the task becomes
longer.

Time of task completion: Another quantitative performance
measure is the time it takes for a planner to complete the task
while guaranteeing a high likelihood of success. From Fig. 10(a)
and (b), the time taken to complete the task with rollout is around
2500 time-steps (250 s) compared to 3000 time-steps (300 s)
for FIRM. There is ∼15% reduction in the time to complete the
task compared to the standard FIRM algorithm. The improve-
ment in execution time makes the rollout-based planner a better
candidate than FIRM for time-sensitive applications.

Varying node density: To further analyze the results, we study
the performance of the method as a function of offline graph
density. Fig. 11 shows how the cost, number of stabilizations,
and time to complete the task change as the density of underlying
graph increases.

D. Comparison With State-of-the-Art

We compare our proposed method with iterative local
optimization-based (ILO-based) methods. Extended LQR [68]
for deterministic systems, iterative linear quadratic Gaussian
control [69], and its belief space variant [70] (referred to as
BSP-iLQG, here) are among the pioneering ILO-based meth-
ods. Due to their optimization-based nature, ILO methods per-
form well when the problem has a single local optimum (i.e.,
the global optimum). When there are multiple local minima, the
performance of ILO methods is sensitive to the initial solution.

In belief space variants of ILO methods, the problem is typ-
ically solved in two phases. First, ignoring all uncertainties, a
deterministic motion planning problem is solved (e.g., using
RRT in [70]) to find an initial trajectory from start to goal. Sec-
ond, the generated trajectory is utilized as the initial solution for
a local optimization process in belief space. In our simulations,
we use a holonomic 2-D robot and point beacon observation
model similar to the one used in [70, Sec. 6.2.2]. whose sig-
nal strength decreases quadratically with robot’s distance from
the beacon. We compare ILO-based approaches to the proposed
method in two aspects: 1) The sensitivity of the quality of the
solution to the initial guess and 2) replanning time.

In [64], we show an environment, where there exists a sin-
gle optimum (i.e., the local optimum is identical to the global
optimum). In this environment, ILO-based methods perform
well and can converge to the optimal solution. However, envi-
ronments with more obstacles and multiple homotopy classes
and/or environments with more complex information distribu-
tion induce multiple local minima, which degrades the per-
formance of the ILO-based methods. Fig. 12 shows one such
environment. The initial RRT as shown in Fig. 12(a) computes a
path that takes the robot toward the goal diagonally. This limits
the resulting local optimum solution to a homotopy class, quite
different from the global optimum. On the other hand, the pro-
posed rollout-based method does not require any initial solution,
and will be able to find the optimal homotopy spanned by the
underlying graph. This key difference is shown in Fig. 12(b),
where the generated solution (green) optimally exploits the in-
formation distribution (beacons are in the upper left corner)
in the environment. In addition, the rollout-based method can
update and repair the homotopy class during the execution to
compensate for potential deviations due to the noise.

In addition to the solution quality, the replanning time in ILO-
based methods grows with the problem horizon. For example,
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Fig. 11. Effect of increasing FIRM graph density on the rollout solution behavior. Each graph node is connected to all nodes within its radius R = 5. As the
number of nodes in the graph crosses 350, a new connection through narrow passage 2 is found, which leads to sharp changes in the graphs. (a) Cost to complete
the task reduces as the number of underlying graph nodes increases (due to availability of more options). Sharp dips in the graph correspond to cases where
adding a new node captures a new low-cost homotopy class. (b) Time taken by the robot to complete the mission. As graph density increases, robot finds more
nodes to connect to during the rollout phase and thus, can take more shortcuts, which reduces its total driving time. (c) Number of visited nodes (the number of
stabilizations) in rollout is significantly smaller than FIRM.

Fig. 12. Comparison of rollout versus local optimization-based methods. Ob-
stacles (magenta) and information beacons (yellow light sources) are shown,
whose signal strength declines quadratically with the robot-beacon distance.
(a) Local optimization-based methods require an initial solution. Deterministic
RRT (black) generates an initial solution (red). (b) Final solution computed
by belief space ILO (red) is restricted to the homotopy of the RRT solution.
On the other hand, the rollout-based policy guides the robot (green) toward
the global optimum by exploiting the underlying global feedback structure. (a)
Initial guess (in red) for ILO-based methods using deterministic RRT planner
(black tree). (b) Locally optimized solution (red) and the path under the rollout
policy (green).

in BSP-iLQG, the complexity of the optimization algorithm
is in the order of O(Init) + O(NlNi), where O(Init) refers
to the complexity of computing an initial guess (e.g., solving
a deterministic motion planning algorithm such as RRT), and
O(NlNi) refers to the complexity of belief optimization. Nl is
the trajectory length and Ni is the number of iterations for the
optimization to converge. Thus, the computational complexity
grows unboundedly with the planning horizon (path length).

Here, we experimentally compare the computational com-
plexity (replanning time) of the proposed method with ILO-
based methods. Although computing the initial solution
O(Init) in ILO-based methods can take significant amount of
time, here, to simplify the results, we only report the time ILO
spends on belief optimization, i.e., O(NlNi), and do not include
the initial solution generation time in the graphs for ILO-based
methods.

We compare the results on the forest environment (see
Fig. 12). Comparison is carried out in C++ on a PC with 3.40
GHz Quad-Core Intel i7-3770 CPU and 16 GB RAM running
Ubuntu 14.04. We grow the environment and planning horizon
at each step. As the forest grows, we maintain the same obstacle

Fig. 13. Planning time: ILO in belief space (blue) versus the proposed method
(red). As the planning horizon (distance between start and goal) increases, local
optimization-based methods take more time to plan and converge, whereas the
planning time in rollout methods is not a function of planning horizon.

density as well as the information source density. The starting
point is at the bottom-left and the goal is at the top-right for
all environment sizes. For each environment size, we run the
planners five times to record the statistical variations. Fig. 13
shows how the planning time of ILO-based methods increases
as the problem size grows. On the other hand, the complexity
of the proposed rollout-based method is constant regardless of
the planning horizon. These results confirm the analyses in Sec-
tion IV-B. In this forest environment, the average replanning
time is 80.1 ms with a variance of 35.1 ms for rollout connec-
tions (edge length) of 2.25 m length (on average). Such rapid
replanning capability allows for dynamic replanning in belief
space to enable SLAP.

VI. EXPERIMENTAL RESULTS FOR A PHYSICAL SYSTEM

In this section, we demonstrate the proposed online POMDP-
based solution for the SLAP on a physical robot. We discuss
the details of implementation and report the important lessons
learned. A video demonstrating the experiments is available
in [71].

A. Target Application and System Setup

Consider a scenario, where the robot needs to operate and
reach a goal in an office environment. Each time the robot
reaches a goal, a new goal is submitted by a higher level applica-
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Fig. 14. Floor-plan of the environment, in which experiments are conducted.

tion (e.g., manually by a user or multiple users). We investigate
the performance and robustness of the method to: changing ob-
stacles, such as doors, and moving people, changes in the goal
location, deviations due to intermittent sensory failures, and
kidnap situations (significant sudden deviation in the robot’s lo-
cation). In all these cases, an online replanning scheme can help
the robot to recover from the off-nominal situation and accom-
plish its goal. In particular, we study the “kidnapped” situation,
where a person might move the robot to an unknown location
during the plan execution, and the robot needs to recover from
this catastrophic deviation. The main focus of the experiments
in this section is to demonstrate SLAP on physical robots by
enabling online belief space (re)planning.

1) Environment: Our experiments are conducted on the
fourth floor of the Harvey Bum Bright building at the Texas
A&M University campus. The floor plan is shown in Fig. 14.
The floor spans almost 40 m of hallways whose average width
is approximately 2 m, which is distinguished in yellow and blue
in Fig. 14. The particular set of experiments reported in this
paper is conducted in the region which is highlighted in blue
in Fig. 14, part of which contains a large cluttered office area
(407-area). This area has interesting properties that makes the
planning more challenging:

a) 407-area is obstacle-laden (chairs/desks and worksta-
tions).

b) As is seen in Fig. 14, there are several doors in this area
which may be open or closed. Two of these doors (front-
door and back-door) are labeled in Fig. 14.

c) There are objects such as chairs and trash-cans in this
environment which usually get displaced.

d) There are moving people, who are avoided using a reactive
behavior, which may displace the robot from its planned
path.

2) Robot model: The physical platform utilized in our exper-
iments is an iRobot Create mobile robot (see Fig. 15). The robot
can be modeled as a unicycle with the following kinematics:

xk+1 =f(xk , uk , wk )=

⎛
⎜⎜⎝
xk + (Vkδt + nv

√
δt) cos θk

yk + (Vkδt + nv

√
δt) sin θk

θk + ωkδt + nω

√
δt

⎞
⎟⎟⎠
(16)

Fig. 15. Picture of the robot (an iRobot Create) operating in the office envi-
ronment. Landmarks can be seen on the walls.

where xk = (xk , yk , θk )T describes the robot state at the
k-th time step. (xk , yk )T is the 2-D position and θk is the
heading angle of the robot. Control commands are the linear
and angular velocities uk = (Vk , ωk )T . We use the Player robot
interface [72] to send the control commands to the robot.

Motion noise: The motion noise vector is denoted by wk =
(nv , nω )T ∼ N (0,Qk ), which is mostly resulted from uneven
tiles on the floor, wheel slippage, and inaccuracy in the duration
of the applied control signals. Experimentally, we observed that
in addition to the fixed uncertainty associated with the control
commands, there exists a portion of the noise that is proportional
to the signal strength. Thus, we model the variance of the process
noise at the kth time-step as Qk = diag((ηVk + σV

b )2 , (ηωk +
σω

b )2), where in our implementations, we have η = 0.03, σV
b =

0.01 m/s, and σω
b = 0.001 rad.

3) Sensing model: For sensing purposes, we use the on-
board laptop webcam. We perform a vision-based landmark
detection based on ArUco (a minimal library for Augmented
Reality applications) [73]. Each landmark is a black and white
pattern printed on a letter-size paper. The pattern on each land-
mark follows a slight modification of the Hamming code, and
has a unique id, so that it can be detected robustly and uniquely.
Landmarks are placed on the walls in the environment (see
Fig. 15). The absolute position and orientation of each landmark
in the environment are known. The ArUco library performs the
detection process and presents the relative range and bearing to
each visible landmark along with its id. Denoting the jth land-
mark position in the global 2-D coordinate frame as jL, we can
model the observation as a range-bearing sensing system:

jzk = [jd̄k , atan2(jd2k
, jd1k

) − θ]T + jv, jv ∼ N (0, jR)

where jd̄k =‖jdk‖ and jdk =[j d1k
, jd2k

]T :=[xk , yk ]T −Lj .
Measurement noise: A random vector j v models the mea-

surement noise associated with the measurement of the jth
landmark. Experimentally, we observed that the intensity of the
measurement noise increases by the distance from the landmark
and by the incident angle. The incident angle refers to the angle
between the line connecting the camera to landmark and the
wall, on which the landmark is mounted. Denoting the incident
angle by jφ ∈ [−π/2, π/2] for the jth landmark, we model the
sensing noise associated with the jth landmark as a zero mean
Gaussian, whose covariance is
jRk =diag((ηrd

jd̄k +ηrφ
|j φk|+σr

b )2 , (ηθd

jd̄k +ηθφ
|jφk|+σθ

b )2)

where in our implementations, we have ηrd
= 0.1, ηrφ

= 0.01,
σr

b = 0.05 m, ηθd
= 0.001, ηθφ

= 0.01, and σθ
b = 2.0◦.
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Fig. 16. (a) Environment: obstacles (blue), free space (black), and landmarks (white diamonds). An MAPRM graph (white) approximates the connectivity of the
free space. (b) Feedback tree (yellow), generated by solving DP on MAPRM. From each node, there is only one outgoing edge, guiding the robot toward the goal.
Arrows in pink coarsely represent the direction on which the feedback guides the robot. (c) Feedback tree (yellow), generated by solving DP on FIRM. Computed
feedback tree guides the robot through the more informative regions, leading to more accurate localization and less collision probabilities. Arrows in pink coarsely
represent the direction on which the feedback guides the robot.

Full vector of measurements: At each step, the robot ob-
serves the set of landmarks that fall into its field of view. Given
that the robot can see r landmarks {Li1 , . . . , Lir

}, the total
measurement vector is z = [i1zT , . . . , irzT ]T . Due to the in-
dependence of measurements of different landmarks, the full
observation model can be written as z = h(x) + v, where v =
[i1vT , . . . , irvT ]T ∼ N (0,R) and R = diag(i1R, . . . , irR).

B. SLAP Versus Decoupled Localization and Planning

In this section, we contrast the results of a traditional decou-
pled localization and planning with the proposed SLAP solution.
Decoupled localization and planning here refers to a method,
where the planner first generates a plan (ignoring the localizer)
and then, in the execution phase, the localizer estimates the state
to aid the controller to follow the planned trajectory. However,
in the proposed SLAP solution, the planner takes the localizer
into account in the planning phase and replans simultaneously
as the localizer updates its estimation.

The test environment is shown in Fig. 16(a). Blue regions
are obstacles and black regions are free space. Landmarks are
shown by small white diamonds. The start and goal locations
for the motion planning problem are marked in Fig. 16(a). The
goal location is inside 407-area (see Fig. 14) and the starting
location is close to the front door.

Decoupled planning and localization: To select a suitable
planner, we tried a variety of traditional planners, such as PRM,
RRT, and their variants. We observed that following the plan
generated by most of these methods leads to collisions with
obstacles and cannot reach the goal point due to the high motion
noise (of our low-cost robot) and due to the sparsity of the
information in certain parts of the test environment. The best
results are achieved using the Medial-Axis PRM (MAPRM)
method [74]. This planner is computationally more expensive
than the other variants, but is more powerful in dealing with
collisions by sampling points on the medial axis of the free
space and constructing a PRM that has the most clearance from
obstacles. An MAPRM graph (in white) for this environment is
shown in Fig. 16(a).

In this environment, there are two main homotopy classes
of paths between the start and goal nodes: Through the front
door of 407-area and through the back door of the 407-area.
From Fig. 16(a), it is obvious that the path through the front
door is shorter. Moreover, the path through the front door has
a larger obstacle clearance (larger minimum distance from
obstacles along the path) compared to the path through the
back door (since the back door is half-open). Therefore, based

on conventional metrics in deterministic settings, such as
shortest path or maximum clearance, MAPRM chooses the path
through the front door over the path through the back door. The
feedback tree that results from solving DP in this case is shown
in Fig. 16(b). As expected, feedback guides the robot toward
the goal through the front door. To execute MAPRM’s plan, we
use time-varying LQG controllers to keep the robot close to the
generated path. However, due to the lack of enough information
along the nominal path, the success rate of this plan is low, and
the robot frequently collides with obstacles. The success prob-
ability along the nominal path is computed by multiple (100)
runs and is equal to 27% (27 runs out of 100 runs were collision
free).

FIRM-based SLAP: As can be seen in Fig. 16(a), the distribu-
tion of information is not uniform in the environment. The den-
sity of landmarks (information sources) along the path through
the back door is higher than that of the path through the front
door. FIRM-based SLAP can incorporate this information in
the planning phase in a principled way. This leads to a better
judgment of how narrow the passages are. For example, in this
experiment, although the path through the front door is shorter
than the path through the back door, considering the information
sources, the success probability of going through the back door
is much greater than going through the front door. Such knowl-
edge about the environment is reflected in the FIRM cost-to-go
and success probability. As a result, it generates a policy that
suits the application, taking into account the uncertainty and
available information in the environment. Solving DP on the
FIRM graph generates the feedback tree shown in Fig. 16(c),
which results in 88% success probability.

C. Online Replanning Aspect of SLAP

In this section, we focus on the “simultaneous” part in SLAP,
which emphasizes the ability of the robot to replan after every
localization update. In other words, in SLAP, the robot dynam-
ically replans based on the new information coming from its
sensors.

We study two important cases to illustrate the effect of online
replanning. We first look into a challenging case, where the
obstacle map changes and possibly eliminates a homotopy class
of solutions. This means the planner has to switch to a different
homotopy class in real time, which is a challenging situation
for the state-of-the-art methods in the belief space planning
literature. Second, we look into deviations from the path, where
we focus on the kidnapped robot problem as the most severe
and general case of belief deviation. Finally, we demonstrate
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the performance of the proposed method on a complex scenario
that includes changes in the obstacles, deviations in the robot
pose, online changes in goal location, etc.

1) Changes in the Obstacle map
Here, we show how enabling simultaneous planning and lo-

calization, online, can handle the changes in the obstacle map.
In this paper, we assume no prior knowledge about the en-

vironment dynamics. As a result, we have a simple model for
obstacle dynamics: All new obstacles will be added to the map
with a large forgetting time of 10 min (i.e., almost-permanent).
The only exception in this model is moving people: if a moving
person is detected, a new obstacle will not be added to the map.
Instead, we assume there exists a lower level reactive behavior
(e.g., stopping or dodging) in a subsumption-like architecture
[75] that suppresses the belief space planner in the vicinity of
the moving person. Once the control is back to the SLAP layer,
the robot might have deviated from its nominal plan, and thus,
the SLAP layer has to replan to recover from such deviations.

Therefore, the method is very efficient in dealing with per-
sistent/slow changes in the map (e.g., closed/open doors). An
important aspect of the method is that it can deal with severe
changes that might eliminate or create homotopy classes of so-
lutions. Doors are an important example of this class. If the
robot observes a closed door (which was expected to be open),
it might have to globally change the plan to get to the goal from a
different passage. This is a very challenging problem for today’s
belief space planners.

As the first experiment, we consider the environment shown
in Fig. 14. The start and goal locations are shown in Fig. 17(a).
We construct a PRM in the environment ignoring the changing
obstacles (assuming all doors are open and there are no people in
the environment). Then, we construct the corresponding FIRM
and solve DP on it. As a result, we get the feedback tree shown
in Fig. 17(a) that guides the robot toward the goal through
the back door of 407-area. However, the challenge is that the
door may be closed when the robot reaches it, and there may
be people moving in the environment. Moreover, for various
reasons (such as motion blur in the image or blocked landmarks
by people), the robot might misdetect landmarks temporarily
during the run.3 To handle such a change in the obstacle map
and replan accordingly, we use the “lazy feedback evaluation”
method outlined in Algorithm 4.

Results on physical robots: Fig. 17(b) shows a snapshot of the
system during the operation when the robot detects the change
signal, i.e., detects that the door is in a different state than its
recorded situation in the map. As a result, the robot updates
the obstacle map as can be seen in Fig. 17(b) (door is closed).
Accordingly, the robot replans; Fig. 17(b) shows the feedback
tree resulting from the replanning. The new feedback guides the
robot through the front door since it detects the back door is
closed. The full video of this run provides much more details
and is available in [71].

It is important to note that it is the particular structure of the
proposed SLAP framework that makes such online replanning
feasible. The graph structure of the underlying FIRM allows us
to locally change the collision probabilities in the environment
without affecting the collision probability of the rest of the
graph (i.e., properties of different edges on the graph are

3Designing perception mechanisms for obstacle detection is not a concern of
this research; thus, we circumvent the need for this module by sticking small
markers with specific IDs on moving objects (doors or people’s shoes).

Fig. 17. (a) Back door is open at this snapshot. The feedback guides the robot
toward the goal through the back door. (b) Back door is closed at this snapshot.
Robot detects the door is closed and updates the obstacle map (adds the door to
the map). Accordingly robot replans and computes the new feedback. The new
feedback guides the robot toward the goal through the front door.

independent of each other; see Fig. 4). This independence
property is not present in the state-of-the-art belief planners,
such as BRM (Belief Roadmap Method) [16] or LQG-MP
[17]. In those methods, collision probabilities and costs on all
edges need to be recomputed if a change in the obstacle map is
detected. The general purpose planners, such as ABT [33], are
also not applicable to this setting due to the size of the problem
and the need to recompute collision probabilities. In ABT, if
the robot detects a change in the obstacle map in the vicinity
of the robot, it needs to alter the uncertainty evolution in an
ABT tree branch near the tree root (i.e., near the robot pose).
This, in turn, will require the whole subtree (including collision
probabilities) under the affected branch to be updated, which is
not a real-time operation for long-horizon planning.

2) Deviations in the Robot’s Pose
In this section, we demonstrate how online replanning en-

ables SLAP in the presence of large deviations in the robot’s
position. As the most severe form of this problem, we consider
the kidnapped robot problem. In the following, we discuss this
problem and challenges it introduces.

Kidnapped robot problem: An autonomous robot is said to be
in the kidnapped situation if it is carried to an unknown location
while it is in operation. The problem of recovering from this
situation is referred to as the kidnapped robot problem [76]. This
problem is commonly used to test the robot’s ability to recover
from catastrophic localization failures. This problem introduces
different challenges, such as how to detect kidnapping, how to
relocalize the robot, and how to control the robot to accomplish
its goal. Our main focus, here, is on the third part, i.e., how



AGHA-MOHAMMADI et al.: SLAP: SIMULTANEOUS LOCALIZATION AND PLANNING UNDER UNCERTAINTY VIA DYNAMIC REPLANNING 1211

to replan in belief space from the new belief resulted from the
kidnapped situation. This is in particular challenging because
large deviations in the robot’s pose can globally change the plan
and the homotopy class of the optimal solution. Therefore, the
planner should be able to change the global plan online.

Detecting the kidnapped situation: To embed the kidnapped
situation into the framework in a principled way, we add a
Boolean observation zlost to the observation space. Let us denote
the innovation signal as z̃k = zk − z−k (the difference between
the actual observations and predicted observation). Recall that
in our implementation, the observation at time step k from the
jth landmark is the relative range and bearing of the robot to
the jth landmark, i.e., jzk = (jrk , jθk ). The predicted version of
this measurement is denoted by jz−k = (jr−k , jθ−k ). We monitor
the following measures of the innovation signal:

r̃k = maxj (|j rk − j r−k |), θ̃k = maxj (dθ (j θk , j θ−k )) (17)

where dθ (θ, θ′) returns the absolute value of the smallest angle
that maps θ onto θ′. Passing these signals through a low-pass
filter, we filter out the outliers (temporary failures in the sensory
reading). Denoting the filtered signals by rk and θk , if both
conditions rk < rmax and θk < θmax are satisfied, then zlost =
0, otherwise zlost = 1. When zlost = 0, we follow the current
rollout planner. zlost = 1 means that the robot is constantly
observing high innovations, and thus, it is not in the location
in which it believes to be (i.e., it is kidnapped). Once it is
detected that the robot is kidnapped, we replace the estimation
covariance with a large covariance (to get an approximately
uniform distribution over the state space).

Replanning from the kidnapped situation: The rollout-FIRM
algorithm can inherently handle such replanning. In other words,
the kidnapped situation, i.e., a deviated mean and very large
covariance, will just be treated as a new initial belief and a new
query. Accordingly, the FIRM rollout creates the best macro-
action (i.e, graph edge or funnel) on the fly and execute it. Note
that the belief deviation might change the optimal homotopy
class and the plan should be updated globally, which makes it
challenging for many POMDP planners. Using the proposed
rollout planner, the robot just needs to go to a neighboring node
from this deviated point. Since the underlying FIRM graph is
spread in the belief space, the only required computation is to
evaluate the cost of edges that connect the new starting point to
the neighboring FIRM nodes.

To get safer plans when replanning from zlost = 1 situation,
we update the rollout planning mechanism slightly: in addition
to the new initial belief, we add one more belief node to the
graph, as described below. Consider a new kidnapped initial
belief b0 ≡ (x̂+

0 , P0). Let δ denote the distance between the
mean of this new belief x̂+

0 and the closest mean on the graph
nodes. If zlost = 1 and δ is not small, the mean belief is far from
actual robot position and moving the robot δ meters based on a
wrong belief might lead to collision. To ensure that the proposed
rollout-based planner can take this case into account, we add a
FIRM node b′ to the graph at (or very close to) the configuration
point v = x̂+

0 .
In such a case starting from a deviated belief b0 with large

covariance, the planner will take the robot to b′ first, which is a
belief with the same mean but smaller covariance (i.e., turning
in-place or taking very small velocities). Planner will make this
choice since moving to a farther node when the covariance is

Fig. 18. This figure shows the setup for the experiment containing two kid-
napping.

Fig. 19. This figure shows the innovation signals r̄k and θ̄k , along with the
thresholds rm ax and θm ax (dashed red lines). Large jumps correspond to the
kidnapping events.

very large will lead to high collision probability; this risk is
reflected in the transition probabilities of the rollout edges.

Results on physical robots: Fig. 18 shows a snapshot of a run
that contains two kidnappings and illustrates the robustness of
the planning algorithm to the kidnapping situation. The feedback
tree (shown in yellow) guides the robot toward the goal through
the front door. However, before reaching the goal point, the
robot is kidnapped in the hallway and placed in an unknown
location within 407-area (see Fig. 18). In our implementations,
we consider rmax = 1 m and θmax = 50◦. The first jump in
Fig. 19 shows this deviation. Once the robot recovers from
being kidnapped (i.e., when both innovation signals in Fig. 19
fall below their corresponding thresholds), replanning from the
new point is performed. This time, the feedback guides the robot
toward the goal point from within 407-area. However, before the
robot reaches the goal point, it is kidnapped again and placed
in an unknown location (see Fig. 18). The second jump in the
innovation signals in Fig. 19 corresponds to this kidnapping.

D. Longer and More Complex Experiments: Robustness to
Changing Goals, Obstacles, and to Large Deviations

To emphasize the ability of the system to perform long-term
SLAP, we conduct a complex experiment that consists of visit-
ing several goals. The user(s) submit a new goal for the robot
every time it reaches its current goal. While the robot needs
to change the plan each time a new goal is submitted, it fre-
quently encounters changes in the obstacle map (open/closed
doors and moving people) as well as intermittent sensor fail-
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Fig. 20. Scenario for the long-term autonomous operation with a sequence
of goals as well as various intermediate events and changes in the environment
map.

ures and kidnapping situations. In [64], we provide an itemized
and detailed description of the specific steps involved in this
experiment based on Fig. 20 and accompanying video [71].

This long and complicated scenario demonstrates how simul-
taneous planning and localization can lead to robust behaviors
in the presence of intermittent model discrepancies, changes in
the environment, and large deviations in the robot’s location.
It is worth noting that online replanning in belief space is a
challenge for the state-of-the-art belief planners as they mainly
rely on search structures that depend on the system’s initial be-
lief. Hence, when the system’s localization pdf encounters a
significant deviation, replanning from the new localization be-
lief requires the structure to be rebuilt, which is not a feasible
operation online. However, constructing a query-independent
graph (the underlying FIRM) allows us to embed it in a replan-
ning scheme such as the proposed rollout policy technique and
perform online replanning to enable SLAP.

VII. METHOD LIMITATIONS AND FUTURE WORK

In this section, we recap the method assumptions and limita-
tions mentioned in previous sections.

Restricted class of POMDPs: As discussed in the previous
sections, it is worth noting that the proposed method is not a
general-purpose POMDP solver. It provides a solution for a
class of POMDP problems (including SLAP), where one can
design closed-loop controllers with a funneling behavior in be-
lief space. In the proposed instantiation of FIRM in this paper,
designing funnels requires knowledge about the closed-form
dynamics and sensor model. Also, the system needs to be lo-
cally linearizable at belief nodes, and the noise is assumed to be
Gaussian. Further, designing a funnel/controller in belief space
requires the uncertainty to be over the part of the state space
that is controllable (e.g., the ego-vehicle). For example, the pro-
posed SLAP solution is not applicable to two-player games,
where there is no direct control on the opponent’s motion or
sensing.

Combining FIRM with general-purpose online solvers: Most
of the general-purpose tree-based POMDP solvers can be com-
bined with FIRM, where an online tree-based planner creates
and searches the tree and use FIRM as the approximate policy
(and cost-to-go) beyond the tree horizon. In particular, when the
problem in hand does not satisfy the above-mentioned assump-
tions, one can approximate the original problem with a problem

that does satisfy the above assumptions, create a FIRM graph,
and use it as the base policy. Leveraging this base policy, one
can use general-purpose online POMDP solvers in the vicinity
of the current belief, such as Despot [32], ABT [33], POMCP
[13], AEMS [31], that act on the original exact problem.

Dealing with dynamic environments: In this paper, we as-
sume no prior knowledge about the environment dynamics. As
a result, the simple model we use for new obstacles is: they
either enter the map with a large forgetting time of 10 min (e.g.,
doors) or avoided reactively (e.g., moving people). A more so-
phisticated and efficient solution can be obtained by learning
and modeling changes over time [44] or using some prior on the
motion of moving objects. Incorporating such knowledge in the
proposed planning framework is a subject of future work.

VIII. CONCLUSION

In this paper, we proposed a rollout-policy-based algorithm
for online replanning in belief space to enable SLAP. The pro-
posed algorithm is able to switch between different homotopy
classes of trajectories in real time. It also bypasses the belief
stabilization process of the state-of-the-art FIRM framework. A
detailed analysis was presented, which shows that the method
can recover the performance and success probability that was
traded off in the stabilization phase of FIRM. Further, by reusing
the costs and transition probabilities computed in the offline
construction phase, the method is able to enable SLAP, via on-
line replanning, in the presence of changes in the environment
and large deviations in the robot’s pose. Via extensive simu-
lations, we demonstrated performance gains when using the
rollout-based belief planner. As a key focus of the work, we
also demonstrated the results of the proposed belief space plan-
ner on a physical robot in a real-world indoor scenario. Our
experiments show that the proposed method is able to perform
SLAP and guide the robot to its target locations while dynami-
cally replanning in real time and reacting to the changes in the
obstacles and deviations in the robot’s state. Such replanning is
an important ability for physical systems, where stochasticity
in the system’s dynamics and measurements can often result
in failure. Hence, we believe that the proposed SLAP solution
takes an important step toward bringing belief space planners
to physical applications and advances long-term safe autonomy
for mobile robots.
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