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a b s t r a c t

In our previous work, we proposed a particle Gaussian mixture (PGM-I) filter for nonlinear estimation.
The PGM-I filter uses the transition kernel of the state Markov chain to sample from the propagated
prior. It constructs a Gaussian mixture representation of the propagated prior density by clustering the
samples. Themeasurement data are incorporated byupdating individualmixturemodes using theKalman
measurement update. However, the Kalman measurement update is inexact when the measurement
function is nonlinear and leads to the restrictive assumption that the number of modes remains fixed
during the measurement update. In this paper, we introduce an alternate PGM-II filter that employs
parallelizedMarkov ChainMonte Carlo (MCMC) sampling to perform themeasurement update. The PGM-
II filter update is asymptotically exact and does not enforce any assumptions on the number of Gaussian
modes. The PGM-II filter is employed in the estimation of two test case systems. The results indicate that
the PGM-II filter is suitable for handling nonlinear/non-Gaussian measurement update.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear filtering is the problem of estimating the state of a
stochastic nonlinear dynamical system using noisy observations.
The filtered state probability density function (PDF) may assume
non-Gaussian andmultimodal densities in nonlinear settings.Mul-
timodality of the state PDF can be incorporated in the estimator
by employing a Gaussian mixture model (GMM) representation
(Sorenson & Alspach, 1971). However, Gaussian mixture filters
such as the Gaussian sum EKF/UKF tend to keep the number
of mixture components fixed throughout the estimation process
(Alspach & Sorenson, 1972). Adaptive entropy based Gaussian-
mixture information synthesis (AEGIS) is a Gaussianmixture filter-
ing approach capable of splitting mixture modes based on entropy
considerations (DeMars, Bishop, & Jah, 2013). A Gaussian mixture
‘blob’ filter that limits the size of the mixture covariances using
linear matrix inequality (LMI) bounds so as to limit the effects of
nonlinearity has been proposed recently (Psiaki, 2016). The ‘blob’
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filter is capable of adapting the number of mixture components
used in estimation. The Particle Filters (PF) are a class of sequential
Monte Carlo methods that employ a Dirac delta representation of
the state PDF (Gordon, Salmond, & Smith, 1993). The PF is capable
of handling non-Gaussianity and relies on importance sampling to
generate a weighted set of samples, also known as particles, from
the posterior PDF. However, it is not computationally feasible to
use PF in the estimation of large dimensional systems due to the
well known weight degeneration problem (Bengtsson, Bickel, & Li,
2008).

In our companion work (Raihan & Chakravorty, 2018), we pro-
posed a particle Gaussian mixture filter (PGM-I) to address the
general nonlinear non-Gaussian filtering problem. The PGM-I filter
was designed to be a Gaussian mixture filter that is capable of
handling the nonlinear uncertainty propagation without enforcing
restrictive assumptions. It allows the number of mixture modes
and the mixture weights to be adjusted during propagation. How-
ever, the Kalman measurement update employed in the PGM-I
filter is inaccurate when the measurement functions are highly
nonlinear. Additionally, under a Kalman update, the number of
Gaussian components remains fixed during the measurement up-
date. In this paper, we propose a PGM-II filter with an alternate
measurement update scheme that is asymptotically exact even
when the measurement models are nonlinear. The PGM-II filter
does away with the Kalman measurement update used in PGM-
I Filter. Instead, it uses a parallelized Markov chain Monte Carlo
(MCMC) method to sample from the posterior PDF. The remainder
of this article is organized as follows: Mathematical preliminaries
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of Gaussian mixture filtering are introduced in Section 2. A brief
overview of MCMC methods is presented in Section 3. The PGM-
II filter algorithm is presented in Section 4. The PGM-II filter is
employed in the estimation of two test problems in Section 5.

An extensive survey of the literature can be found in Veettil and
Chakravorty (2016).

2. Gaussian mixture filtering

Let x ∈ ℜ
d be the state of a dynamical system given by

xn+1 = f (xn, wn), (1)

wherewt is a noise termwith knowndistribution. Let z1, z2, . . . , zn
be a sequence of measurements of the system where

zn = h(xn) + νn. (2)

The distribution of the measurement noise term νn is assumed to
be known. Given this state space description and the initial state
PDF π0(x), the objective of the filtering problem is to be able to
determine the conditional state PDF pn(x|Zn). Here Zn represents
the sequence of all measurements recorded until time n. The tran-
sition kernel pn(x|x′) of the stateMarkov chain can be derived from
the process model given in (1). Given the transition kernel pn(x|x′)
and themeasurement likelihood pn(zn|x), the filtered density of the
state Markov chain can be computed using a recursive algorithm
that involves two basic steps. Let πn−1 be the PDF of the state at
time n − 1 conditioned on Zn−1. Given πn−1, the prediction step
evaluates the propagated prior π−

n (x), i.e., the PDF of the state at n
conditioned on Zn−1, using the law of total probability.

π−

n (x) =

∫
pn(x|x′)πn−1(x′)dx′, (3)

In the measurement update step, the propagated PDF π−
n (x) is

updated with the newmeasurement zn according to the Bayes rule
to obtain the posterior PDF πn(x).

πn(x) =
pn(zn|x)π−

n (x)∫
pn(zn|x′)π−

n (x′)dx′
, (4)

Let us assume that the prior PDF πn−1(X) and the propagated prior
π−
n (x) can be approximated by a weighted sum of Gaussian PDFs.
πn−1(x) =

∑M(n−1)
i=1 ωi(n−1)Gi(x;µi(n−1), Pi(n−1)), π−

n (x) =∑M−(n)
i=1 ω−

i (n)G
−

i (x;µ−

i (n), P
−

i (n)). When the GMM representa-
tions of πn−1(X) and π−

n (x) are substituted in (3) and (4), we get

π−

n (x) =

M(n−1)∑
i=1

ωi(n − 1)
∫

pn(x|x′)Gi(x′
;µi(n − 1), Pi(n − 1))dx′  

π−

i,n(x)

. (5)

From (5), it can be seen that propagated prior can be represented
as mixture model {(ω−

i (n), π
−

i,n(x))}, i ∈ {1, . . . ,M(n − 1)} where

ω−

i (n) = ωi(n − 1), (6)

π−

i,n(x) =

∫
pn(x|x′)G−

i (x′
;µ−

i (n), P
−

i (n))dx′. (7)

This mixture model has M(n − 1) components like the GMM of
the prior PDF in (5). However, the components π−

i,n(x) are not
guaranteed to be Gaussian PDFs and as demonstrated in our previ-
ous work (Raihan & Chakravorty, 2016) Gaussian mixture modes
undergoing a nonlinear transformation could split to form new
modes or coalesce with other modes. Hence, in general M−(n) ̸=

M(n−1). The PGM-I filter was proposed to incorporate this feature
in Gaussian mixture filters.

Let li(n) be the likelihood that the measurement zn came from
the ith mixture component.

li(n) ≡

∫
pn(zn|x′)π−

i,n(x
′)dx′. (8)

The expression for the posterior PDF can be rewritten as follows
(Raihan & Chakravorty, 2016).

πn(x) =

M−(n)∑
i=1

w−

i (n)li(n)∑
jw

−

j (n)lj(n)  
wi(n)

pn(zn|x)π−

i,n(x)
li(n)  
πi,n(x)

. (9)

This shows that the posterior PDF πn(x) can be represented as a
mixture model {(ωi(n), πi,n(x))}, i ∈ {1, . . . ,M−(n)} where,

ωi(n) =
w−

i (n)li(n)∑
jw

−

j (n)lj(n)
, (10)

πi,n(x) =
pn(zn|x)π−

i,n(x)
li(n)

. (11)

Thismixturemodel hasM−(n) components and themixandsπi,n(x)
are not guaranteed to beGaussianwhen themeasurement function
is nonlinear. The PGM-I filter performs a Kalman measurement
update on each component of the GMM representing the predicted
prior to obtain an M−(n) component GMM representation of the
posterior PDF. However, when themeasurement function is highly
nonlinear or ambiguous, this is not satisfactory. For example, let
the propagated PDF at time n be given by a unimodal Gaussian PDF

π−

n (x) = G(X,
[
0
0

]
,

[
1 0
0 2

]
) (12)

Assume that a measurement zn = 2 is recorded where z = x21 +

τ , such that τ ∼ G(x, 0, 2). Ensemble representations of π−
n (x)

and πn(x) given in Fig. 1 show that the posterior PDF cannot be
adequately represented with a unimodal Gaussian PDF.

3. Markov Chain Monte Carlo

The MCMC methods are a class of algorithms that are used
to generate samples from probability distributions that are not
amenable to direct sampling (Gilks, Richardson, & Spiegelhalter,
1996). In the present paper we consider the Metropolis Hast-
ings (M-H) algorithm which relies on a proposal distribution to
generate the samples (Hastings, 1970). Formally, let p(x) be the
target distribution fromwhich the samples are to be generated. Let
Q (xi|xi−1) be the proposal distribution. Then the MCMC algorithm
proceeds as follows. Let xt−1 be the sampled state at t − 1. Then
generate xt∗ ∼ Q (x|xt−1). The candidate state xt∗ is then chosen
or not based on the acceptance probability α. The acceptance
probability is computed as α = min{1, Q (xt−1

|xt∗)p(xt∗)
Q (xt∗|xt−1)p(xt−1)

}. It can be
shown that the sampling rule given above is constructed so that
the target distribution p(x) is the equilibrium distribution of the
resulting Markov chain. This implies that the initial samples may
not be distributed according to p(x). As a result, all points sampled
during an initial burn-in period Tbr are discarded. In theory, the M-
H algorithm is capable of generating samples from complex multi-
modal distributions. However, generating a representative sample
from a multimodal distribution may require a long burn-in period
and a large sample size. Parallelizable MCMC algorithms that split
the state space into partitions and allow asynchronous sampling
from individual partition elements have been proposed recently
(VanDerwerken & Schmidler, 2013). In this work, we propose a
similar approach to sample from multimodal posterior PDFs.
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Fig. 1. Formation of multimodality during measurement update.

4. PGM-II filter

In this section we present a step by step description of the
proposed PGM-II filter and an associated convergence result.

4.1. The PGM-II algorithm

The PGM-II filter relies on a Gaussian mixture representation of
the state PDF. However, unlike the PGM-I filter, it is not essential
for the operation of PGM-II algorithm that we obtain a functional
representation of the posterior PDF.

Assumption 1. The predicted prior PDF and the filtered PDF can
be accurately approximated by a GMM.

Given an ensemble of states Sn−1 = {x1n−1 · · · xNn−1} from the
prior PDF at time n−1, the PGM-II Filtering algorithm is composed
of the three basic steps described below.

(1) Prediction: During the prediction step, the PGM-II filter
generates an ensemble S−

n from the predicted prior π−
n (x)

using samples drawn from the prior PDF πn−1(x), i.e., the
ensemble Sn−1, and the Markov transition kernel pn(x′

|x). A
pictorial representation of the prediction is given as the first
step in Fig. 2.

(2) Clustering : A functional representation of π−
n (x) in the

form of a GMM is recovered from the ensemble S−
n using

a clustering scheme C (Richard, Duda, Hart, & Stork, 2000).
The output of the clustering scheme is composed of the
mixtureweightsω−

i (n),meansµ−

i (n) and covariances P−

i (n).
The ellipsoids obtained at the end of clustering step in Fig. 2
represent the Gaussian mixture components. In particular,
π−
n (x) =

∑M−(n)
i=1 ω−

i (n)Gi(x;µ−

i (n), P
−

i (n)).
(3) Measurement update: The PGM-II filter relies on a paral-

lelizedMCMCmethod to perform themeasurement update.
The parallelized MCMC update is broken down into the
following four steps.

(a) Sample from the ith posterior mixture component
πi,n(x) from (11) using MCMC to obtain the ith poste-
rior component ensemble Ai.

(b) Cluster the ith posterior component sample Ai to ob-
tain a functional representation for the component pdf
πi,n(x).

(c) Evaluate the ith posterior mixture component weight
wi(n) from (10).

(d) Sample from the mixture model {wi, πi,n(x)} to obtain
a full posterior ensemble Sn.

The four step update process is described in more detail
below.

Let pn(zn|x) be the measurement likelihood. Then the
posterior distribution is proportional to the product of the
predicted prior and the likelihood pn(zn|x), i.e., πn(x) ∝

pn(zn|x)π−
n (x). We rewrite the posterior PDF in its mixture

form as obtained in (9):

πn(x) =

M−(n)∑
i=1

wi(n)πi,n(x). (13)

Furthermore, from (7), πi,n(x) ∝ pn(zn|x)π−

i,n(x). In step
3a of the measurement update, the PGM-II filter generates
ensembles Ai from the mixture components πi,n(x), i ∈

{1, 2, . . . ,M−(n)} using MCMC since pn(zn|x) is given and
π−

i,n(x) is known from the clustering step. From a com-
putational standpoint, it is much more appealing to per-
form MCMC sampling on the individual mixture compo-
nents πi,n(x) as opposed to the full posterior PDF πn(x).
This completes step 3a. Due to the random walk behavior
of MCMC, consecutive samples from Ai will be correlated.
To remove correlations, we propose clustering the samples
and obtaining a functional representation for the underlying
component pdf πi,n(x). Notice that the mixture represen-
tation of πi,n(x) will be parameterized by expectations of
various functions of the component random variable. The
ergodicity of the chain will ensure that sample averages
computed from MCMC samples during clustering will con-
verge to these expectations, in spite of the correlations. Once
a mixture representation for πi,n(x) is constructed, we can
obtain independent samples from it by direct sampling. The
clustering of Ai to obtain functional representation of πi,n(x)
completes the step 3b of measurement update. Notice that
in (13), each component PDF πi,n(x) has amixing probability
wi(n) associated with it. Step 3c consists of obtaining these
weights. However, to compute the mixture weights, we
need to evaluate the modal likelihoods li(n), given by the
integral in (8). Evaluating this integral is non trivialwhen the
measurement function is nonlinear. So an approximation is
used in the computation ofwi(n). The calculation of approx-
imate modal likelihoods is discussed in detail in Section 4.2.
From the component pdfs πi,n(x) in step 3b and the weights
wi(n) in step 3c, we can obtain a mixture representation
of the posterior pdf as given in (13). Given the mixture
representation, a sample X from the full posterior PDF πn(x)
can be obtained via the two step approach given below.

(i) Choose a component by sampling k from {1, 2, . . . ,
M−(n)} with probability wk(n).
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Fig. 2. PGM-II filter—prediction and update.

(ii) Draw a sample X from the component PDF πk,n(x).

This is the sampling process given in step 3d which com-
pletes the measurement update step. Algorithm 1 gives a
pseudo code description of the PGM-II filter.

4.2. Calculation of likelihoods

Asmentioned previously, the PGM-II filter generates an ensem-
ble Ai from the posterior mixture component πi,n(x) using MCMC
sampling. Let η(x) be a proper PDF.

Algorithm 1 PGM-II Algorithm

Given π0(x) =
∑M(0)

i=1 ωi(0)Gi(x;µi(0), Pi(0)), transition density
kernel pn(x′

|x), n = 1.

(1) Sample N particles X (i) from πn−1 and the transition kernel
pn(x′

|x) as follows:

(a) Sample X (i) from πn−1(.).

(b) Sample X ′(i) from pn(.|X (i)).

(2) Use a Clustering Algorithm C to cluster the set of particles
{X ′(i)

} intoM−(n) Gaussian clusters with weights, mean and
covariance given by {w−

i (n), µ
−

i (n), P
−

i (n)}.

(3) Use MCMC to sample from the component posteriors πi,n(x)
to generate the ensembles Ai

(4) Compute the mixture weights wi(n) by evaluating the se-
quence of modal likelihoods li(n) using (8) and (10)

(5) Sample N particles from the weighted collection of ensem-
bles {(wi(n), An,i)}

(6) n = n+1, go to Step 1.

Then, from (11), we have
∫
Rn

η(x)πi,n(x)
pn(zn|x)G−

i (x;µ−

i (n),P−

i (n))
dx =

1
li(n)
.

Since Ai are samples from πi,n(x), an importance sampling approx-
imation to the above integral can be arrived as follows:

1
li(n)

≈

Ni,n∑
j=1

η(xj)
pn(zn|xj)G−

i (xj;µ−

i (n), P
−

i (n))
. (14)

Hence an estimate of li(n) can be computed by evaluating the sum
given in (14) using the MCMC samples and taking the reciprocal
(Gelfand & Dey, 1994).

To sample from the posterior PDF πn(x) usingMCMC, we need a
function that is at least proportional to it. Given a GMM represent-
ing the predicted prior PDF, we have πi,n(x) ∝ G−

i (x;µ−

i (n), P
−

i (n))
pn(zn|x). The PGM-II filter obtains aGMMrepresentation of the pre-
dicted prior by clustering the predicted ensemble. In the present
work, we have used an approach that relies on k-means clustering
algorithm to obtain the GMM parameters. The simple k-means
clustering algorithm requires the number of mixture components
to be input externally. To overcome this limitation, we have devel-
oped a clustering schemewhich determines the optimal number of
clusters given an upper bound on this number (Veettil & Chakra-
vorty, 2016). In present work we have used Gaussian proposals of
the form X t

∼ X t−1
+ G(0, KpΣ), where Kp is a positive constant.

The covariance Σ can be chosen as the component covariance of
the predicted prior P−

i (n).

4.3. Analysis of the PGM-II algorithm

In the following, we prove that the PGM-II filter density con-
verges in probability to the true filter density under certain as-
sumptions. We showed in Raihan & Chakravorty (2018) that un-
der the condition of exponential forgetting of initial conditions,
the true filter density can be approximated arbitrarily well with
arbitrarily high confidence given that the sampling error in each
step is small. We establish a similar result in the following. Define:
P(π̂n−1) ≡ π̂−

n =
∑M−(n)

i=1 ω̂−

i (n)Gi(x; µ̂−

i (n), P̂
−

i (n)), P̂(π̂n−1) ≡
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ˆ̂π
−

n =
∑M−(n)

i=1
ˆ̂ω

−

i (n)G(x; ˆ̂µ
−

i (n),
ˆ̂P
−

i (n)), Fzn (π̂n−1) =
∑M(n)

i=1 ω̂i(n)G

(x; µ̂i(n), P̂i(n)), F̂zn (π̂n−1) =
∑M(n)

i=1
ˆ̂ωi(n)G(x; ˆ̂µi(n),

ˆ̂P i(n)).
The above results represent the true and the approximate PGM

predicted and filtered densities at time n given the approximate
density π̂n−1 at time n − 1. We have the following result:

Lemma 1. Given the GMM representation of the prior pdf above, and
a perfect Clustering algorithm C, given any ϵ′ > 0, and δ′ > 0, there
exists an Nϵ′,δ′ (n) < ∞ such that: if the number of samples used to
approximate the predicted pdf at time n is greater than Nϵ′,δ′ (n) then:

Prob(| ˆ̂ω
−

i (n) − ω̂−

i (n)| > ϵ′) < δ′, (15)

Prob(| ˆ̂µ
j−
i (n) − µ̂

j−
i (n)| > ϵ′) < δ′, (16)

Prob(| ˆ̂P
jk−

i (n) − P̂ jk−
i (n)| > ϵ′) < δ′, (17)

for all i, j, k, where µ̂j−
i represents the jth element of the mean vector

µ̂−

i and P̂ jk−
i represents the (j, k)th element of the covariance matrix

P̂−

i .
It must be noted that perfect clustering algorithm is an idealized

assumption. In practice, cluster assignment, moment calculation, etc.
are prone to errors.

Lemma 2. Let | ˆ̂ω
−

i (n) − ω̂−

i (n)| < ϵ′, | ˆ̂µ
j−
i (n) − µ̂

j−
i (n)| < ϵ′, and

|
ˆ̂P
jk−

i (n) − P̂ jk−
i (n)| < ϵ for all i, j, k. Then, given that the state of the

system x ∈ ℜ
d, there exists C−(n) < ∞ such that ∥ ˆ̂π

−

n − π̂−
n ∥ <

C−(n)dϵ′.

Lemmas 1 and 2 are proved in Raihan & Chakravorty (2018).

Lemma 3. Let, ∥ ˆ̂π
−

n − π̂−
n ∥ < ϵ−, then given the posterior ˆ̂π

∗

n =

Fzn (π̂n−1), there exists k(n) < ∞ s.t: ∥ ˆ̂π
∗

n − π̂n∥ < k(n)ϵ−.

Proof. Let K1 =
∫
pn(zn|x′)π̂−

n (x′)dx′, K2 =
∫
pn(zn|x′) ˆ̂π

−

n (x
′)dx′.

Then

∥ ˆ̂π
∗

n − π̂n∥ =

∫
|(
π̂−
n (x′)
K1

−

ˆ̂π
−

n (x
′)

K2
)pn(zn|x′)|dx′ (18)

=

∫
|(
π̂−
n (x′) − ˆ̂π

−

n (x
′) + ˆ̂π

−

n (x
′)

K1
−

ˆ̂π
−

n (x
′)

K2
)pn(zn|x′)|dx′

≤

∫
|
K2 − K1

K1K2
| ˆ̂π

−

n (x
′)pn(zn|x′)dx′

+∫
|π̂−

n (x′) − ˆ̂π
−

n (x
′)|

pn(zn|x′)
K1

dx′ (19)

= |
K2 − K1

K1
| + max

x′

pn(zn|x′)δ−

K1

=
|
∫
(π̂−

n (x′) − ˆ̂π
−

n (x
′))pn(zn|x′)dx′

|

K1
+ max

x′

pn(zn|x′)ϵ−

K1

≤ 2max
x′

pn(zn|x′)ϵ−

K1
(20)

Choosing k(n) = 2maxx′ pn(zn|x′)
K1

completes the proof.

Let ˆ̂π
∗

n be the exact posterior evaluated from the propagated
PDF ˆ̂π

−

n . The filtered PDF ˆ̂πn is a GMM representation of ˆ̂π
∗

n. By
Lemma 1, there exists an upper bound on the number of samples
N∗

ϵ′,δ′
such that the mixture parameters of ˆ̂π

∗

n are estimated with
an accuracy of ϵ′ with a confidence 1− δ′ if the MCMC draws these
many samples. Let the number of particles used in PGM-II filter be
N = max(Nϵ′,δ′ ,N∗

ϵ′,δ′
). Therefore: ∥π̂n − ˆ̂πn∥ = ∥π̂n − ˆ̂π

∗

n + ˆ̂π
∗

n −

ˆ̂πn∥,≤ ∥π̂n − ˆ̂π
∗

n∥ + ∥ ˆ̂π
∗

n − ˆ̂πn∥.

From Lemmas 1–3, we have Prob(∥π̂n − ˆ̂π
∗

n∥ > k(n)C−(n)dϵ′) <
δ′, from Lemmas 1 and 2, we also have Prob(∥ ˆ̂π

∗

n − ˆ̂πn∥ >

C(n)dϵ′) < δ′.Clearly, Prob
(
∥π̂n−

ˆ̂πn∥ >
(
k(n)C−(n)+C(n)

)
dϵ′

)
<

2δ′. Hence, by choosing ϵ′ such that ϵ =
(
k(n)C−(n) + C(n)

)
dϵ′,

and δ′ such that δ = 2δ′, and N = max(Nϵ′,δ′ ,N∗

ϵ′,δ′
), we get

Prob(∥π̂n − ˆ̂πn∥ > ϵ) < δ.

This proves that if the number of samples used to approximate
the predicted and posterior GMM parameters are more than N ,
then the sampling error stays within the desired bounds with
confidence 1 − δ. Assuming that the underlying Markov chain
has the exponential forgetting property, this suffices to show the
convergence in probability of the PGM-II density to the true filter
density identical to Lemma 2 in Raihan & Chakravorty (2018).

5. Numerical examples

In this section, we employ the PGM-II Filter in the estimation
of two test case systems to study the filtering performance. The
results are compared with that of other nonlinear filters such as
UKF, PF, PGM-I filter and Blob filter. A basic sequential importance
resampling (SIR) implementation of the PF is considered. The PGM-
I variant which uses the unscented transform to perform the mea-
surement update, i.e., the PGM-I(UT) filter, is used in this compar-
ison study (Raihan & Chakravorty, 2016). The estimation results
are compared for their accuracy, consistency and informativeness.
The accuracy of estimates is evaluated in terms of a Monte Carlo
averaged root mean squared error (Erms(t)). The value of Erms(t)
is computed as Erms(t) =

√
1

NMo

∑NMo
j=1 ∥xj,t − µj,t

2
2, where xj,t and

µj,t represent the actual and estimated states at the time instant t
during the jthMonte Carlo run. Also evaluated is the time averaged
error (Erms) given by Erms =

1
T

∑T
t=1Erms(t).

The NEES test is employed to evaluate the consistency of the
filtered PDF. The NEES test statistic (βj,t ) for a unimodal Gaussian
PDF is given by βj,t = (xj,t − µj,t )TP−1

j,t (xj,t − µj,t), where Pj,t
represents the covariance of the filtered PDF at time t during
jth Monte Carlo run. The Monte Carlo averaged NEES test (βt ) is
computed from this expression asβt =

1
NMo

∑NMo
j=1 βj,t .When x ∈ Rn

is distributed normally, the statistic given by NMoβt is distributed
according to a χ2 distribution with nNMo degrees of freedom.

The informativeness of estimates is compared in terms of the
volume of 2 − σ uncertainty region (Raihan & Chakravorty, 2016).
When the state PDF is represented by a GMM, this volume can
be computed as the sum of the 2 − sigma volumes of individual
mixturemodes, i.e.,Vσ2 =

∑L
i=1|2Σi|.Note thatwhen themixture

modes overlap, measuring their total volume as given above will
lead to underestimating the informativeness of the estimate.

5.1. Example 1

In test case 1, we consider a variant of the well known one
dimensional estimation problem (Gordon et al., 1993)

xk =
xk−1

2
+

25xk−1

1 + x2k−1
+ 8 cos[1.2(k − 1)] + wk−1 (21)

We define a multimodal measurement function

zk = 4 sin(8xk) + νk. (22)

The process and measurement noises are assumed to be indepen-
dent zero mean Gaussian random variables with covariances Q =

6, R = 0.1, respectively.Measurements are recorded at every other
instant. The estimation is performed for a duration of 50 time steps
and repeated over 50 Monte Carlo runs. The PF is implemented as
an SIR with 80 particles. The values of the parameters α, β, χ used
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Fig. 3. Results: Test case 1.

in the UKF are 1.3, 1.5 and 0.2. The PGM-II filter and the PGM-
I filter are employed with 80 particles and a maximum number
of 6 mixture components. For the blob filter, 80 Gaussians with a
maximum covariance of 10−4 was used in the estimation process.

The Monte Carlo averaged RMSE results (Erms) are plotted in
Fig. 3a. The PGM-II filter, blob filter and the PF are seen to outper-
form the UKF by a largemargin. The tracking performance of PGM-
II filter is also found to be somewhat better than that of PGM-I filter.
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Table 1
Case 1: Results.

RMSEpos %cases above 99.99%Ub V2σ

PGM-II 9.1066 25 71.8883
PGM-I(UT) 10.0047 92.31 64.3722
UKF 15.9752 98.08 63.4955
PF 9.2925 59.62 131.5503
Blob filter 9.2737 34.62 0.0137

The time averaged tracking error Erms given in Table 2 underlines
this observation. The results of NEES test plotted in Fig. 3b show
that the UKF estimates overstep the 99.99% upper bound Ub0.9999
during the entire duration of the simulation after t = 1. The PGM-II
filter and the blob filter are seen to offer more consistent estimates
that lie within the 99.99% upper bound. The total fraction of the
simulated time (βc%) during which each filter offered consistent
estimates according to the Ub0.9999 can be computed. The values
of βc% for all five filters are also listed in Table 1. The NEES results
indicate that the PGM-II filter outperforms the blob filter, PF, PGM-I
filter and the UKF. Finally, theMonte Carlo averaged 2−σ volumes
for each of the five filters are plotted in Fig. 3c. The time averaged
values of the 2 − σ volumes are listed in Table 1. The blob filter is
seen to have the smallest time averaged 2 − σ volumes.

5.2. Example 2

In this example, we evaluate the performance of PGM-II filter in
the so called ‘‘Blind tricyclist’’ problem proposed in Psiaki (2013).
As the name suggests, the Blind tricyclist problem involves the
estimation of the state of a blind tricyclist steering across an
amusement park. The blind tricyclist is given the speed and steer-
ing angle time histories as inputs so that he can navigate across the
park. However, his initial position coordinates (X1, X2) and heading
angle (X3) are unknown to him. To assist the navigation, mea-
surements are recorded, but only intermittently and they consist
of the relative bearing angle between the tricyclists heading and
the location of two friends who are riding merry-go-rounds. The
blind tricyclist can distinguish between themeasurements coming
from the two friends. However he only knows the centers and radii
of the merry-go-rounds with certainty. The initial rotation angles
(X4, X5) and the fixed rotation rates (X6, X7) of the two merry-go-
rounds are unknown. The objective of the blind tricyclist problem
is to estimate the quantities X1, . . . , X7 at all times. Hence it is
a seven dimensional nonlinear estimation problem that involves
both static and dynamic parameters. Note that estimation errors
for the static parameters, and consequently the blind tricyclist
problem, do not satisfy the exponential forgetting criterion em-
ployed in PGM-I filter. The equations governing the evolution of
the state variables can be found in Psiaki (2013). The relative
bearing angle measurement between the blind tricyclist and the
first merry-go-round at the instant k is given by

ψ1,k =atan2(y1 + ρ1 sin(X4) − X2 − br sin(X3)) (23)
(x1 + ρ1 cos(X4) − X1 − br cos(X3)) − X3 + νk.

Here, (x1, y1) represents the center of the first merry-go-round,
ρ1 represents its radius and br represents the distance between
the point below the blind tricyclists head and the midpoint of
the two rear wheels. The noise parameters used in simulating the
blind tricyclist problemare given in Psiaki (2013). In the simulation
of blind tricyclist problem, the PGM-I and PGM-II filters are im-
plemented with 8000 particles where 10,000 particles were used
in the SIR type PF implementation. The values of the parameters
α, β, χ used in the UKF implementation are 0.01, 2, 0, respectively.
The blob filterwas implemented using 7000Gaussian pdfswith the

Table 2
Case 2: Terminal results.

RMSEpos %cases above 99.99%Ub l̂og(V2σ )

PGM-II 2.8257 22 −21.8973
PGM-I(UT) 4.5577 68 −46.4367
UKF 9.0014 70 −45.2474
PF 9.2239 100 −359.4890
Blob filter 0.6999 4 −48.2278

LMI upper bound on the mixture covariances chosen from (Psiaki,
2016). For theMCMC step, the length of the burn-in time is set to be
800. The propagated prior and the final posterior are represented
using 8000 samples. During the measurement update, the 8000
samples get divided among the clusters, i.e. if there are 2 clusters,
each cluster gets to sample q∗ (8000/2) points usingMCMCwhere
q is a positive integer. The standard practice is to choose a large
enough q, pick every qth point from the ensemble obtained from
MCMC and discard the rest. Instead we cluster these samples and
get functional representations of the component posteriors πi,n(x)
using q = 3. After computing the posterior weights wi(n), we
sample a set of 8000 particles from {wi(n), πi,n(x)}. The sampling
covariancewas chosen as 0.05×P−

i (n) where P−

i (n) represents the
ith propagated prior covariance given by the clustering algorithm.
The maximum number of mixture components used during the
clustering step for PGM-II filter is set to be three. Keeping the
number of clusters small helps to keep the computational cost
low. Additionally, it helps to keep the approximate propagated
pdf more diffuse which improves the diversity of hypotheses that
are sampled. However, in order for the filter to not assign dispro-
portionate confidence in any single mode, the diagonal elements
of the clustered prior covariance matrices are never allowed to
fall below a certain lower bound. This helps to prevent the loss
of diversity. It also makes the estimates less accurate. When the
diagonal elements do fall below this threshold, they are updated
artificially. The lower bounds used on the diagonal elements of the
prior covariance are summed up in the vector Vlb below.

Vlb =
[
2.8 2.8.4e − 3 9.9e − 2 9.9e − 2.2e − 4 2e − 4

]T (24)

The PGM-I filter is also implemented with a maximum number of
3 Gaussian components.

The accuracy and informativeness of the estimation results are
analyzed using RMSE and Vσ2 as in test case 1. However, the NEES
test is performed as described in Psiaki (2013), i.e, by computing
the fraction of the total number of Monte Carlo runs that produced
NEES test statistic that falls within the 99.99% upper bound of a
seven dimensional chi squared random variable. This upper bound
is computed to be equal to Ub = 29.8775. The results obtained
from50Monte Carlo runs of the Blind tricyclist problemare plotted
in Fig. 4. The results show that by the end of the estimation process,
the blob filter offers the most accurate and consistent estimates
followed by the PGM-II filter and the PGM-I filter. The terminal
RMSE position error, terminal % of cases where the NEES results
are above 99.99% and the time averaged 2 sigma ellipse volume
Vσ2 are provided in Table 2. The value of Vσ2 for the PF is seen to
be smallest. However, this result must be analyzed in conjunction
with the fact that the PF results are almost always inconsistent.

The results of the blind tricyclist estimation problem indicates
certain important limitations associated with the implementation
of PGM-II filter. In theory, theMCMC basedmeasurement update is
capable of sampling from any posterior probability distribution. It
is also well suited for sampling in large dimensions in comparison
to other approaches such as the importance sampling. However,
when the target distribution is highly non-Gaussian, as in the blind
tricyclist problem, theMarkov chain can be slowlymixing. This can
diminish the ability of the MCMC based approaches to sufficiently
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Fig. 4. Results: Test case 2.
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explore the state space in a reasonable amount of time. The par-
allelized approach presented in this work was meant to alleviate
this problem. The results indicate that this aspect of the problem
requires further study. The bigger picture is that clustering might
not be the best way to approximate non-Gaussian unimodal pdfs,
and thus, more research is required into exploring ‘‘curse of di-
mensionality free density estimation schemes’’ for such pdfs. It
must be observed thatwhile the LMI based ‘blob’ filtering approach
has several advantages over the conventional Gaussian sum filters
(Alspach & Sorenson, 1972), the number of Gaussians used may
still need to be increased exponentially with the dimension of the
state space in order to cover the volume of a single Gaussian during
reapproximation.

6. Conclusions

A novel particle Gaussian mixture filter that does not use a
Kalman type linearized measurement update is presented in this
paper. The proposed approach, termed the PGM-II filter, uses the
transition kernels of the underlyingMarkov chain to generate sam-
ples during the propagation step. The samples are then clustered
to recover a GMM representation of the propagated prior PDF. The
measurement update is performed with the help of a parallelized
MCMC based sampling algorithm. As a result, the PGM-II measure-
ment update step is asymptotically exact and does not enforce
restrictive assumptions on the number of mixture components.
The PGM-II filter is employed in the estimation of two test cases
to evaluate the estimation performance. The PGM-II filter is seen
to outperform the PGM-I filter, the PF, and the UKF in both test
cases. The blob filter is seen to offer superior performance in the
blind tricyclist problem. It is demonstrated that the PGM-II filter
is capable of handling the nonlinear/non-Gaussian measurement
update. Strategies for improving the performance of the MCMC
method in sampling extremely multimodal target densities need
to be studied further.
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