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a b s t r a c t

In this paper, we propose a particle based Gaussian mixture filtering approach for nonlinear estimation
that is free of the particle depletion problem inherent to most particle filters. We employ an ensemble
of possible state realizations for the propagation of state probability density. A Gaussian mixture model
(GMM) of the propagated uncertainty is then recovered by clustering the ensemble. The posterior density
is obtained subsequently through a Kalman measurement update of the mixture modes. We prove
the convergence in probability of the resultant density to the true filter density assuming exponential
forgetting of initial conditions. The performance of the proposed filtering approach is demonstrated
through several test cases and is extensively compared to other nonlinear filters.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Rapid advances in the fields of control and automation have
inspired a significant interest in recursive and computationally
efficient algorithms for estimating the state and associated un-
certainty in higher dimensional nonlinear systems. The Kalman
filter provides the unbiasedminimumvariance estimator for linear
dynamical systems perturbed by additive Gaussian noise (Kalman,
1960; Kalman & Bucy, 1961). The extended Kalman filter (EKF)
was introduced to incorporate nonlinear systems into the Kalman
filtering framework (Smith, Schmidt, & McGee, 1962). However,
the limitations of the Jacobian linearization assumptions and the
accumulation of linearization errors can result in the divergence of
EKF estimates. The Unscented Kalman Filter (UKF) and the broader
class of sigma point Kalman filters provided a derivative free alter-
native to the EKF (Julier, Uhlmann, & Durrant-Whyte, 1995; Wan
& Van Der Merwe, 2001). Both EKF and UKF approximate the pos-
terior probability density function (pdf) with a single Gaussian pdf.
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However, the state pdf in a general nonlinear filtering problem can
be non-Gaussian and multimodal. Cubature Kalman filters (CKF)
that rely on a spherical–radial cubature rule to evaluate the inte-
grals involved in the estimation have been proposed (Arasaratnam
&Haykin, 2009). A variant of cubature filters, that perform random
scaling and rotation of cubature points and axes, known as stochas-
tic integration filter (SIF) has also been proposed recently (Dunik,
Straka, Simandl, & Blasch, 2015). A Gaussian mixture approxima-
tion of the state pdfwas proposed to incorporate themultimodality
of the problem in nonlinear settings (Alspach & Sorenson, 1972;
Sorenson&Alspach, 1971). These approaches however had amajor
shortcoming as the number of Gaussian components were fixed
initially and kept constant through out the estimation process. Also
the component weights were updated only during the measure-
ment update. Approaches to adapting the weights of individual
Gaussian modes by minimizing the propagation error commit-
ted in the Gaussian mixture model (GMM) approximation have
been proposed recently (Terejanu, Singla, Singh, & Scott, 2011).
A different approach to improving the accuracy of GMM filters
is by splitting the Gaussian components during the propagation
based on nonlinearity induced distortion (DeMars, Bishop, & Jah,
2013). Both of these approaches require frequent optimizations,
or entropy calculations, to be performed during the propagation,
which significantly add to the overall computational requirement.
A Gaussian mixture ‘blob’ filter that relies on EKF for propagation
and update has been proposed recently (Psiaki, 2016). It performs
a resampling step between the propagation and update stages.
The resampling step ensures that the component covariances of
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the propagated pdf all obey a linear matrix inequality (LMI) based
upper bound.

The particle filters (PF) are a class of sequential Monte Carlo
methods that employ an ensemble of possible state realizations
known as particles to represent the state pdf (Arulampalam,
Maskell, Gordon, & Clapp, 2001; Gordon, Salmond, & Smith, 1993).
These states are sampled from the initial pdf and propagated for-
ward in time based on the nonlinear system model. The measure-
ment updates are performed by assigning weights to individual
particles which may then be resampled. The PF does not enforce
restrictive assumptions on the nature of dynamics or pdf. How-
ever Particle filters are subject to the curse of dimensionality due
to the particle depletion problem wherein a significant fraction
of particles lose their importance weights during the measure-
ment update. Preventing depletion requires the number of par-
ticles to be increased exponentially with the dimension of state
space (Bengtsson, Bickel, & Li, 2008). Particle based approaches
such as the Ensemble Kalman filter (EnKF) and the Feedback par-
ticle filter (FPF) that forego the resampling based measurement
update have been demonstrated to be effective in higher dimen-
sional filtering problems involving unimodal pdfs (Evensen, 2002;
Yang, Mehta, & Meyn, 2013). The Gaussian sum particle filter
(GSPF) is a nonlinear filter that uses a GMM representation of
the state pdf (Kotecha & Djuric, 2003). It obtains an ensemble
of particles from each GMM component. The ensembles are then
propagated forward separately like a parallel bank of filters. The
GSPF relies on an importance sampling based approach to perform
the measurement update.

In this paper, we propose a particle Gaussian mixture (PGM)
filter for nonlinear estimation. The PGM filter design is inspired by
a previous work on a UKF–PF hybrid filter that was proposed for
space object tracking (Dilshad Raihan & Chakravorty, 2015). The
PGM filter employs an ensemble of possible state realizations for
performing the uncertainty propagation. A functional form of the
propagated pdf is recovered as a GMM by clustering the particles.
The posterior pdf is obtained by performing a Kalman measure-
ment update on theGMM. The PGM filter is conceived to keep track
of the nonlinear uncertainty propagation, without performing any
additional optimization or splitting operations during the propaga-
tion step. As the posterior pdf is obtained without employing the
particle measurement update, the PGM filter is not prone to the
particle depletion problem and the associated curse of dimension-
ality. Since the additional clustering step is performed only during
the measurement update step, the PGM filter is especially suitable
for filtering in the sparse measurement scenario.

The remainder of this article is organized as follows. An intro-
ductory discussion onmixturemodel filtering is given in Section 2.
The PGM filter algorithm, and an associated convergence result, are
presented in Section 3. Details pertaining to the actual implemen-
tation of the proposed filter are given in Section 3.2. The PGM filter
is applied to three test cases and compared extensively with other
nonlinear filters in Section 4.

2. Preliminaries: mixture model filtering

Let the state of the dynamical system of interest be denoted
by x ∈ ℜd. We assume that the state of the system evolves
according to a Markov chain whose transition density is known
and is specified by pn(x′|x). We also obtain measurements of the
state at discrete times n and the observation model is specified by
the following: zn = h(xn) + vn, where h(x) is a nonlinear mea-
surement function and {vn} is a discrete time Gaussian white noise
process with zero mean and covariance Rn. Let πn−1(x) represent
the conditional state pdf pn−1(x|Zn−1) where Zn−1 is the sequence
of all measurements recorded until time n − 1. Additionally, let
the prediction of the pdf before the measurement zn at time n

(the predicted prior pdf) pn(x|Zn−1) be represented by π−n (x). Then,
π−n (x) =

∫
pn(x|x′)πn−1(x′)dx′. Further, after measurement zn is

received, the posterior pdf of the state is obtained according to
the Bayes rule as follows: πn(x) =

pn(zn|x)π−n (x)∫
pn(zn|x′)π−n (x′)dx′

, pn(zn|x) is the
measurement likelihood function and can be inferred from the
measurement model above.

The prediction and the update steps above are the key steps
to any recursive filtering algorithm. Let us assume that a mixture
representation has been chosen for the predicted and posterior
pdfs. In particular, let π−n (x) =

∑M−(n)
i=1 ω−i (n)p

−

i,n(x), πn(x) =∑M(n)
i=1 ωi(n)pi,n(x), where p−i (.), pi(.) are pdfs, and {ω−i (n)}, {ωi(n)}

are positive sets of weights that both add up to unity. The
terms M−(n) and M(n) represent the number of components
used in the mixture representation. The prediction equation for
the mixture model then boils down to the following: π−n (x) =∑M(n−1)

i=1 ωi(n− 1)  
ω−i (n)

∫
pn(x|x′)pi,n−1(x′)dx′  

p−i,n(x)

. Explicitly, the mixture

prediction step can be split into the following two steps: ω−i (n) =
ωi(n− 1), p−i,n(x) =

∫
pn(x|x′)pi,n−1(x′)dx′. Given an observation zn,

the prior mixture π−n (x) is transformed into the posterior mixture
πn(x) as follows:

πn(x) =
∑M−(n)

i=1 ω−i (n)pn(zn|x)p−i,n(x)∑M−(n)
i=1 ω−i (n)

∫
pn(zn|x′)p−i,n(x

′)dx′
. Define the likelihood that

zn comes from the ith mixture component as follows: li(n) ≡∫
pn(zn|x′)p−i,n(x

′)dx′. Rearranging the above mixture expression
using the definition of the component/mode likelihood gives us

πn(x) =
∑M−(n)

i=1
w−i (n)li(n)∑
jw
−

j (n)lj(n)  
wi(n)

pn(zn|x)p−i,n(x)
li(n)  
pi,n(x)

. This expression

shows that the measurement update has a hybrid nature, a stan-
dard update of the individual modes of the mixture with the mea-
surement zn, and a discrete Bayesian update of the mode weights
using the mode likelihoods li(n). Note that the mode likelihoods
are the Bayes normalization factors for the individual modes. Ex-
plicitly, we delineate the discrete and continuous updates of the
mixture model below:

ωi(n) =
w−i (n)li(n)∑
jw
−

j (n)lj(n)
, (1)

pi,n(x) =
pn(zn|x)p−i,n(x)

li(n)
. (2)

Let us now assume that we have fixed the form of the mixture
model to a GMM, i.e., the posterior pdf at time n − 1 can be
represented by the GMM:

pi,n−1(x) = G(x;µi(n− 1), Pi(n− 1)), (3)

where G(x;µ, P) represents the Gaussian pdf with mean µ and
covariance P . Consider first the prediction equations. Note that
the number of mixture components at time n − 1, M(n − 1), is
the same as the number of mixture components of the prediction
at time n, M−(n). However, this assumes that the prediction of
the ith Gaussian component pi,n−1 of the posterior pdf at time
n − 1 remains a single Gaussian at time n, p−i,n. However, this is,
in general, not true. The number of mixture components necessary
to approximate the state pdf may vary from one time step to the
other. For example, consider the nonlinear dynamical systemgiven
by[

ẋ1
ẋ2

]
=

⎡⎣ −x1
2

sin(
x2
2
)

⎤⎦+ Γ (t), (4)
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Fig. 1. Formation of multimodality: (a) through dynamics; (b) through measure-
ment update.

π0(X) = G(X,
[
−12
0

]
,

[
0.2 0
0 1

]
), (5)

where Γ (t) is a white noise process. In Fig. 1(a), the locations of
200 particles sampled from the unimodal initial pdfπ0(x0) are seen
to separate into two distinct modes as time progresses. Hence, in
order to use mixture models for prediction, we have to find a way
to deal with time varying number of GMM components.

Next, let us consider the measurement update (2). Since the
prior component is Gaussian, and if the update (2) is approximated
using the Kalman/linear minimum mean squared error (LMMSE)
update (Dilshad Raihan & Chakravorty, 2015; Lefebvre, Bruyn-
incks, & De Schutter, 2002), we have

µi(n) = µ−i (n)+ PT
i,zx(n)P

−1
i,zz(n)(zn − Ei[h(X)]), (6)

Pi(n) = P−i (n)− PT
i,zx(n)P

−1
i,zz(n)Pi,zx(n), (7)

where

Pi,zx(n) = Ei
[(

h(X)− Ei
(
h(X)

))(
X − Ei(X)

)T]
, (8)

Pi,zz(n) = Ei
[(

h(X)− Ei
(
h(X)

))(
h(X)− Ei

(
h(X)

))T]
(9)

and Ei[f (X)] represents an expectation of the function f (X) with
respect to the random variable X where X ∼ G(x;µ−i (n), P

−

i (n)).
However, similar to the prediction case, in general, a single pre-
dicted Gaussian component can split intomultiple modes after the
update (2). An illustration of this is given in Fig. 1(b). In this casewe
have a prior ensemble generated from π (x) = G(X,

[
0
0

]
,

[
1 0
0 2

]
).

Then, a noisy measurement z = 2 is recorded where z = x21 +
τ , τ ∼ G(x, 0, 2). An ensemble for the posterior pdf π (x|z) is
obtained through resampling and is seen to split into two separate
modes. Hence, just as in the prediction step, there is a need to
deal with the time varying number of GMM components after an
update.

We shall not consider the measurement update aspect of the
GMM filtering problem in this paper, which will be treated in a
companion paper. Hence, we make the following assumption for
the remainder of the paper.

Assumption 1. We shall assume a Gaussian mixture represen-
tation for the predicted and posterior filtered densities. Further,

we assume that given a predicted mixture component at time
n, G(x;µ−i (n), P

−

i (n)), the update (2) after an observation zn is
approximated arbitrarily well by the Least Squares/Kalman update
(6)–(7).

3. The particle Gaussian mixture (PGM) filter

In this section, we first present the PGM filter. The basic as-
sumption underlying the PGM algorithm is that the predicted prior
and posterior filter densities can be represented using a GMM. In
particular, let π−n (x) =

∑M−(n)
i=1 ω−i (n)G

−

i (x;µ−i (n), P
−

i (n)), πn(x) =∑M(n)
i=1 ωi(n)Gi(x;µi(n), Pi(n)). In general,M−(n) andM(n) need not

be the same, however, owing to Assumption 1, they are assumed to
be equal for the purposes of this paper. For instance, given a linear
measurement function, this is true. The PGM filtering algorithm is
composed of three basic steps that are described below.

(1) Sampling: The first step in the PGM algorithm is the use of
the transition kernel to generate a set of samples at the next time
step (which is the same as in a Particle filter). In practice, we first
draw an ensemble Sn of Np states {x1n, . . . , x

i
n, . . . , x

Np
n } from the

GMM πn(x) and Np independent samples of the process noise term
w(n) from its density PW (w) to get Swn = {w

1
n, . . . , w

i
n, . . . , w

Np
n },

and we let xi−n+1 = f (xin)+ w
I
n,where f (.) denotes the dynamics.

(2) Clustering: Then, we use a clustering algorithm C to par-
tition the set of points into M−(n + 1) different clusters whose
means and covariances can be evaluated using sample averaging.
Clustering is a field of Machine learning termed as Unsupervised
Learning (Duda, Hart, & Stork, 2000; Jain, Murthy, & Flynn, 1999).

Algorithm 1 PGM Algorithm

Given π0(x0) =
∑M(0)

i=1 ωi(0)Gi(x0;µi(0), Pi(0)), transition density
kernel pn(x|x′), n = 1.

(1) Sample Np particles X (i) from πn−1 and the transition kernel
pn(x|x′) as follows:

(a) Sample X (i)′ from πn−1(.).

(b) Sample X (i) from p(.|X (i)′ ).

(2) Use a clustering algorithm C to cluster the set of particles
{X (i)
} into M−(n) Gaussian clusters with weights, mean and

covariance given by {w−i (n), µ
−

i (n), P
−

i (n)}.

(3) Update the mixture weights and the mixture means and
covariances to {ωi(n), µi(n), Pi(n)}, given the observation zn,
utilizing the Kalman update (6), (7).

(4) n= n+1, go to Step 1.

In the experimental results presented in this paper, we use the
simple k-means clustering algorithm (Lloyd, 1982), which is com-
putationally very inexpensive while still being able to give good
results for well separated clusters. The k-means clustering is a
popular approach to partitioning wherein the dataset is grouped
into different clusters so that the sum of squares of within-group
distances is minimized, i.e, the dataset S is partitioned intoM clus-
ters G∗M = {S1, . . . , SM} such that G∗L = argmin

GL

∑M
i=1

∑
xj∈Si
∥xj −

µi∥
2. Here GM denotes any partition of the set S into M clusters

andµi represents themean of the elements of the ith cluster in that
partition. Once the vectors xi are assigned into different clusters, an
M mode GMM describing the set S may be derived as follows. ni =∑N

j=11(xj ∈ Si), wi =
ni
N , µi =

1
ni

∑
xj∈Si

xj, Ci =

∑
xj∈Si

(xj−µi)(xj−µi)T

ni−1
.

Here 1(.) represents the indicator function.
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(3)Measurement update: Incorporate themeasurement infor-
mationbyupdating themeans and covariances of allMmodes indi-
vidually using a Kalmanmeasurement update/LMMSEupdate. Also
update the mixture weights using the mode likelihoods li(n+1) as
in (1). In the present work we have considered two different ap-
proaches to computing the covariance terms

(
Pi,ZX (n+1), Pi,ZZ (n+

1)
)
and the expectations

(
Ei

(
h(X)

))
required for performing the

Kalman update.

(a) Update 1 (PGM1-UT): In this approach, we compute the
statistics of the posterior random variable with the un-
scented transform using a set of 2d + 1 sigma points that
are distributed symmetrically. The covariance terms and
the expectations required for computing the Kalman gain
and posterior statistics are then computed as the weighted
sample averages from the sigma points.

(b) Update 2 (PGM1): In this approach, the covariances and
cross covariances required for computing the gain matrix
are evaluated directly from the particles. Let S−1j,n+1 =

{x1−j,n+1, . . . , x
i−
j,n+1, . . . , x

Nj−
j,n+1} denote the set of particles that

form the jth cluster. Then the mean and covariance terms
required for updating the cluster j are assigned the cor-
responding sample averages computed from S−1j,n+1. The
statistics of the measurement random variable are com-
puted from the sample Y−1j,n+1 = {h(x

1−
j,n+1), . . . , h(x

i−
j,n+1),

. . . , h(xNj−j,n+1)}

Recursive implementation of the prediction, clustering and up-
date steps as described here constitutes the PGM filter.

3.1. Analysis of the PGM filter

In the following, we analyze the PGM filter.We show that under
the assumption of a perfect clustering scheme C, the PGM filter
density converges in probability to the true filter density.

Let Fzn (πn−1) = πn denote the true filter density at time n given
that the filter density at time n − 1 is πn−1 and the observation
at time n is zn. Further, let F̂zn (πn−1) denote the filter density ap-
proximated by the PGM filter. We make the following exponential
forgetting assumption on the true filter.

Assumption 2. We assume that there exists C < ∞ and ρ <

1 such that: ∥Fzn (Fzn−1 (..(Fz1 (π0))..)) − Fzn (Fzn−1 (..(Fz1 (π
′

0))..))∥ ≤
Cρn
∥π0−π

′
0∥, for anymeasurement sequence {z1, z2, . . . , zn}, any

π0, π
′

0, and where ∥.∥ denotes the L1 norm.

The conditions underwhich the exponential forgetting assump-
tion holds is an active area of research (Douc, Moulines, & Ritov,
2007). However, the rate of forgetting is not always exponential.
For example, parameter estimation problems do not satisfy the
exponential forgetting assumption.

Let F̂zn (F̂zn−1 (· · · (F̂z0 (π0)) · · ·)) denote the filtered density ap-
proximated by the PGM filter given the measurement sequence
{z1, z2, . . . , zn} and the initial density π0.

Assumption 3. Let Prob(∥F̂zn (π̂n−1) − Fzn (π̂n−1)∥ > ϵ) < δ, for all
n. Further, we assume that Prob(∥F̂zn (π̂n−1)−Fzn (π̂n−1)∥ > M) = 0,
for all n, for someM <∞ (the error in a one step approximation of
the filter density is almost surely uniformly bounded over all time).

The true posterior density at time n, Fzn (π̂n−1), given the pos-
terior from the previous time step, π̂n−1, and the current obser-
vation zn, is deterministic. However, we cannot exactly reproduce
the true posterior Fzn (π̂n−1), and hence, we have the approxima-
tion F̂zn (π̂n−1), which itself is the result of a random sampling
experiment as done by the PGM algorithm. Therefore, we require

that the approximation be a good enough representation of the
true posterior with a high probability, where the probability now
is over the randomness of the sampling that is required to generate
the approximation.

Lemma 1. Let ∥F̂zn (π̂n−1) − Fzn (π̂n−1)∥ ≤ ϵ, for all n. Under
Assumption 2, it follows that ∥π̂n − πn∥ ≤

(C+1)ϵ
1−ρ .

Proof. We have

π̂n − πn = F̂zn (F̂zn−1 (..(F̂z1 (π0))..))
− Fzn (Fzn−1 (...(Fz1 (π0))..)),

= [F̂n(F̂n−1(..(F̂1(π0))..))− Fn(F̂n−1(..(F̂1(π0))..))]  
∆n

+ [Fn(F̂n−1(..(F̂1(π0))..))− Fn(Fn−1(F̂n−2(..(F̂1(π0))..)))]  
∆n−1

+ · · · + [Fn(Fn−1(....(F̂1(π0))...))− Fn(..(F1(π0))..)]  
∆1

. (10)

Note that the different terms on the RHS above are ∆n =

F̂n(π̂n−1)− Fn(π̂n−1),∆n−1 = Fn(F̂n−1(π̂n−2))− Fn(Fn−1(π̂n−2)), . . . .
∆1 = Fn(..(F2(F̂1(π0)))..)− Fn(..(F2(F1(π0)))..). Using Assumption 2
and the fact that ∥F̂zn (π̂n−1)−Fzn (π̂n−1)∥ ≤ ϵ, for alln, it follows that
∥∆i∥ ≤ Cρn−iϵ, and thus, ∥π̂n−πn∥ ≤

∑n−1
i=1 Cρ

n−iϵ+ ϵ ≤
(C+1)ϵ
1−ρ .

The above result also holds for initial conditions in the infinite
past, i.e., at n = −∞. In the following, we assume that the initial
condition was in the infinite past.

Lemma 2. Let Assumptions 2 and 3 hold. Given any δ, ν > 0, there
exists an N̄ < ∞, such that Prob(∥π̂n − πn∥ >

(1+ν)(1+C)ϵ
1−ρ ) ≤ N̄δ,

where N̄ = n − n′, and n′ is such that
∑n′

i=−∞Cρn−i
≤ q, and

q = ν(C+1)ϵ
M(1−ρ) .

Proof. Let en = ∥π̂n − πn∥, and let ϵk = ∥F̂zk (π̂k−1) −
Fzk ( ˆπk−1)∥. It follows that en ≤

∑n
k=−∞Cρn−kϵk. Choose n′ such

that
∑n′

i=−∞Cρn−i
≤ q, where q = ν(C+1)ϵ

M(1−ρ) . Then,

en =
∑n

k=n′
Cρn−kϵk  
ēn

+

∑n′

k=−∞
Cρn−kϵk  

∆∗n

. From Assumption 3,

it follows that Prob(∥∆∗n∥ > qM) = 0, and thus, Prob(∥∆n∥ >
ν(C+1)ϵ
1−ρ ) = 0. Similarly, from Lemma 1, it follows that Prob(ēn >

(C+1)ϵ
1−ρ ) ≤ (n − n′)δ ≡ N̄δ. From the above two inequalities, it

follows that Prob(en > (1+ν)(C+1)ϵ
1−ρ ) ≤ N̄δ.

The two results above establish that if the sampling error at
each step in the filter is small enough, and under the condition of
exponential forgetting of initial conditions, the true filter density
can be approximated arbitrarily closely with arbitrary high con-
fidence. In the following, we establish that the sampling error at
each step in the PGM filtering process can be arbitrarily small and
thus, it follows from the two results above that the PGM filter can
approximate the true filter density with arbitrarily high accuracy
and arbitrarily high confidence. First, based on Assumption 1, we
define the following:

P(π̂n−1) ≡ π̂−n =
M−(n)∑
i=1

ω̂−i (n)Gi(x; µ̂−i (n), P̂
−

i (n)),

P̂(π̂n−1) ≡ ˆ̂π−n =
M−(n)∑
i=1

ˆ̂ω−i (n)G(x; ˆ̂µ
−

i (n),
ˆ̂P−i (n)),
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Fzn (π̂n−1) =
M(n)∑
i=1

ω̂i(n)G(x; µ̂i(n), P̂i(n)),

F̂zn (π̂n−1) =
M(n)∑
i=1

ˆ̂ωi(n)G(x; ˆ̂µi(n),
ˆ̂P i(n)).

The above results represent the true and the approximate PGM
predicted and filtered densities at time n given the approximate
density π̂n−1 at time n− 1. We have the following result:

Lemma 3. Given the GMM representation of the prior pdf above, and
a perfect Clustering algorithm C, given any ϵ′ > 0, and δ′ > 0, there
exists an Nϵ′,δ′ (n) < ∞ such that: if the number of samples used to
approximate the predicted pdf at time n is greater than Nϵ′,δ′ (n) then,

Prob(| ˆ̂ω−i (n)− ω̂
−

i (n)| > ϵ′) < δ′, (11)

Prob(∥ ˆ̂µ−i (n)− µ̂
−

i (n)∥2 > ϵ′) < δ′, (12)

Prob(∥ ˆ̂P−i (n)− P̂−i (n)∥ > ϵ′) < δ′, (13)

for all i.

Proof. In the following, we suppress the explicit dependence on
time n to ease the notation. Under the assumption of a perfect
clustering scheme, and given that the number of samples in each
cluster is large enough, the mixture weight estimates ˆ̂ω−j (n) are
normal distributed, and one can use the central limit theorem
(CLT) (Kallenberg, 1997) to always find an Nϵ′,δ′ (ωj) such that (11)
is satisfied.

For a Gaussian random vector X ∈ Rn with independent
components {x1, . . . , xn} and E{x2i } = 1, it can be shown that

Prob{
⏐⏐⏐∥X∥2 −√d

⏐⏐⏐ ≥ t} ≤ 2e
−ct2

k4 ,∀t ≥ 0. Here c is a positive

constant and k = maxi∥xi∥ψ2 where ∥xi∥ψ2 = inf{t; E{e(
xi
t )2
} ≤

2} (Vershynin, 2017). If ˆ̂µ−i (n) is determined as the sample mean
of points assigned to cluster Ci, then we have

Prob

{⏐⏐⏐⏐⏐
( P̂−i (n)

Nj

)−1
2

(
ˆ̂µ−i (n)− µ̂

−

i (n)
)

2

−
√
d

⏐⏐⏐⏐⏐ ≥ t

}
≤ 2e

−ct2

k4 ,

(14)

where Nj is the number of points assigned to cluster j. This can be
manipulated to show that

Prob
{(
ˆ̂µ
−

i (n)− µ̂
−

i (n)
)

2
≥

t +
√
d(

P̂−i (n)
)−1

2


2

√
Nj

}
≤ 2e

−ct2

k4 . (15)

Using the above inequality and by setting
t+
√
d(

P̂−i (n)
)−1

2


2

√
Nj

< ϵ′, 2e
−ct2

k4 < δ′, it is possible to choose an Nj

so that (12) is satisfied. The minimum value of Nj that satisfies the
above set of equations is chosen as Nϵ′,δ′ (µj).

Let ˆ̂P
−

i (n) be the sample average estimate of ith modal covari-
ance. Then it can be shown that

Prob
{  ˆ̂P−i (n)−P̂−i (n)

P̂−i (n)
 ≥ ck2

(√
d+u
Nj
+

d+u
Nj

)}
≤ 2e−u,where k is a

constant greater than or equal to one and c ≥ 0 (Vershynin, 2017).
Here ∥∥ represents the spectral norm of the covariance matrix.

Hence, by picking an Nj such that ck2
(√

d+u
Nj
+

d+u
Nj

)(P̂−i (n))
 <

ϵ′, 2e−u < δ′, the condition given in (13) can be satisfied. Let
Nϵ′,δ′ (Pj) be the minimum Nj that satisfies this condition. Pick

Nϵ′,δ′ (j) = max
(
Nϵ′,δ′ (ωj),

Nϵ′,δ′ (µj)

ω̂−j
,

Nϵ′,δ′ (Pj)

ω̂−j

)
. Such Nϵ′,δ′ (j) can be

found for all clusters Cj and given that we choose Nϵ′,δ′ as follows:

Nϵ′,δ′ = max
j

Nϵ′,δ′ (j), (16)

it is guaranteed that all the elements of themean vector µ̂−(n) and
the covariance matrix P̂−(n) can be estimated to an accuracy of ϵ′
with confidence of at least 1− δ′, which completes the proof of the
result. Note that the aboveNϵ′,δ′ is a function of timeNϵ′,δ′ (n) owing
to the time dependence of the GMM that is estimated.

It may be shown that under Assumption 1, the error incurred
in estimating the posterior mean and covariance µ̂i(n), P̂i(n) is at
most K (n)ϵ′, for some time varying K (n) < ∞ which depends
on the posterior mean and covariance, given that the predicted
prior means and covariances of the clusters of the GMM have been
approximated to an accuracy of ϵ′. This can be summarized in the
following result:

Lemma 4. Given any ϵ′, δ′ > 0, choose Nϵ′,δ′ (n) according (16). If the
number of samples used in the PGM filter to approximate the predicted
prior pdf at time n is greater than Nϵ′,δ′ (n) then, there exists k(n) <∞
s.t:

Prob(| ˆ̂ωi(n)− ω̂i(n)| > K (n)ϵ′) < δ′,

Prob(
 ˆ̂µi(n)− µ̂i(n)

 > K (n)ϵ′) < δ′,

Prob(
 ˆ̂P i(n)− P̂i(n)

 > K (n)ϵ′) < δ′,

for all i.

Next, we find a bound on the L1 error between the estimated
and true filtered densities given the error between the parameters
of the GMM representing the true and the approximate filtered
densities.

Lemma 5. Let | ˆ̂ωi(n) − ω̂i(n)| < ϵ′,
 ˆ̂µi(n)− µ̂i(n)

 < ϵ′, and ˆ̂P i(n)− P̂i(n)
 < ϵ for all i. Then, given that the state of the system

x ∈ ℜd, there exists C(n) <∞ such that ∥ ˆ̂πn − π̂n∥ < C(n)dϵ′.

Proof. We show the result for the case of a simple one component
Gaussian with an error in the covariance, it can be generalized to
the GMM in a relatively straightforward fashion but at the expense
of a very tedious derivation which we forego here for clarity. We
also suppress the explicit dependence on time n in the following
for notational convenience.

ˆ̂π (x)− π̂ (x) =
1

(2π )d/2| ˆ̂P|1/2
e−

1
2 (x−µ)

T ˆ̂P
−1

(x−µ)
−

1

(2π )d/2|P̂|1/2
e−

1
2 (x−µ)

T P̂−1(x−µ),

≈
1

(2π )d/2|P̂|1/2
e−

1
2 (x−µ)

T P̂−1(x−µ)

×
1
2
(x− µ)T (P̂−1∆P̂−1)(x− µ), (17)

where ˆ̂P = P̂ + ∆ and since e−
1
2 (x−µ)

T (P̂+∆)−1(x−µ)
≈

e−
1
2 (x−µ)

T P̂−1(x−µ)e−
1
2 (x−µ)

T P̂−1∆P̂−1(x−µ), which in turn implies
(17). This in turn implies that ∥ ˆ̂π − π̂∥ ≈ 1

(2π )d/2|P̂|1/2
×∫

e−
1
2 (x−µ)

T P̂−1(x−µ) 1
2 (x − µ)

T P̂−1∆P̂−1(x − µ)dx ≤ C(P̂)ϵ′

(2π )d/2|P̂|1/2
×∫

e−
1
2 (x−µ)

T P̂−1(x−µ) 1
2 (x−µ)

T P̂−1(x−µ)dx, since there exists C(P̂) <
∞ such that 1

2 (x−µ)
T P̂−1∆P̂−1(x−µ) ≤ C(P̂)ϵ′ 12 (x−µ)

T P̂−1(x−µ),
owing to the fact that ∥∆∥ < ϵ′.
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Now, let Y = P̂−1/2(X − µ). Then, it follows that ∥ ˆ̂π − π̂∥ ≤
C(P̂)ϵ′ 1

(2π )d/2
∫
e−1/2y

T yyTydy = C(P̂)ϵ′d. The last step in the above
equation follows from noting that Y ′Y is a chi-squared random
variable of degree of freedom d and thus, its expected value is
d. This establishes our result. In general for a GMM, the constant
C(n) would depend on the means and covariances of all the GMM
components and their weights.

Lemmas 4 and 5 immediately lead us to the following corollary.

Corollary 1. Let ϵ′(n) be the desired accuracy in estimating the
parameters of the GMM representing Fzn (π̂n−1), i.e., the true filtered
density given observation zn and the PGMposterior pdf at the previous
time π̂n−1. Let δ′(n) be the desired confidence of the estimate. IF ϵ′(n)
and δ′(n) are chosen such that

C(n)K (n)ϵ′(n)d = ϵ, (18)

δ′(n) =
δ

N
, (19)

and the corresponding number of samples Nϵ′(n),δ′(n)(n) be chosen
according to (16), then it follows that ∥Prob∥F̂zn (π̂n−1)−Fzn (π̂n−1) ∥>
ϵ) ≤ δ

N .

Proof. Recall that π̂n = Fzn (π̂n−1), and ˆ̂πn = F̂zn (π̂n−1). Then,
from Lemma 5 we have that ∥π̂n −

ˆ̂πn∥ ≤ C(n)K (n)dϵ′(n) if
|θ̂i(n) −

ˆ̂
θ i(n)| < ϵ′(n) for all i, where θ̂i(n) represents the true

parameters underlying the GMM representation of π̂n and ˆ̂θ i(n)
represents their PGM approximation. Hence: Prob(∥π̂n −

ˆ̂πn∥ >

C(n)K (n)dϵ′(n)) < δ′(n),which owing to the definition of ϵ′(n) and
δ′(n) leads us to the desired result.

Hence, using Corollary 1 and Lemma 2, it follows that if the
number of samples used to approximate the parameters of the
predicted GMM pdf at time n is greater than the Nϵ′(n),δ′(n), then
it follows that Prob(∥ ˆ̂πn − π̂n∥ >

(1+ν)Cϵ
1−ρ ) ≤ δ, for all n for any

arbitrarily small ϵ, δ, ν > 0. However, in order for Assumption 3
to be valid, the sample averages ˆ̂θn have to be almost surely
bounded. Here ˆ̂θn represents any parameter that is computed from
the sample and used to specify the pdf such as the component
weights, means or covariances. To show this, due to the Strong Law
of Large Numbers, it is also true that ˆ̂θNn → θ̂n as N → ∞, where
ˆ̂
θNn represents the estimate of the parameters after N samples.
Given the sample size is large enough, the estimate ˆ̂θNn is arbitrarily
close to the true parameters θ̂n almost surely, and thus, since the
true parameters are bounded, so are the estimates. This may be
summarized in the following result.

Proposition 1. Let Assumptions 1 and 2 hold. Given a perfect cluster-
ing algorithm C, and any ϵ, δ, ν > 0, at every time step n, choose the
required accuracy of the approximation ϵ′(n) from (18), the required
confidence δ′(n) from (19), and the corresponding minimum number
of samples Nϵ′(n),δ′(n) from (16), then, Prob(∥ ˆ̂πn−π̂n∥ >

(1+ν)Cϵ
1−ρ ) ≤ δ.

Remark 1 (The Curse of Dimensionality). The number of samples
required to estimate the mixture weights does not depend on the
dimension of the state space. Additionally, it can be seen that the
number of samples required to estimate the component means
and covariances increase only as O(d). From the above analysis,
(16), and Lemma 4 it can be concluded that the number of samples
required to estimate the parameters of the predicted and posterior
pdfs accurately increases only linearly with the dimension of the
state space, and thus, is free from the ‘‘Curse of Dimensionality’’.
However, we have to be more careful regarding the functional L1

error in the PGM density: (18) shows that the accuracy parameter
required at every time step is inversely proportional to the dimen-
sion of the state space since ϵ′(n) = ϵ

C(n)K (n)d , and thus, in order
to attain the same accuracy in terms of the functional error of the
filtered density, the number of samples have to increase as O(d2)
where d is the dimension of the problem. Further, it should also be
noted that the computation of the sample averages required by the
PGM filter grows as O(d2).

3.2. Implementation

In this section, we discuss certain steps involved in the practical
implementation of the PGM filter in detail.

Modified k-means clustering: The k-means algorithm requires
the total number of clusters to be specified externally. To work
around this limitation, we have implemented a strategy which
only requires the upper bound M−max(n + 1) as the external in-
put instead of M−(n + 1). We define the likelihood agreement
measure (Lmes) (DeMars et al., 2013) as the measure of fitness of
the parametric model θa in describing the dataset S. Let θa,Mbe an
M-componentmixturemodel indexed by a and arrived at from k−
means clustering. Then Lmes(θa,M ) may be computed as Lmes(θa,M ) =∑Np

i=1πθa (x
i−
n+1), where πθa (x) is the mixture pdf derived from the

parametric model θa,M . Let θa∗,M∗ be the optimal parametric model
with M−n+1 = M∗ components that maximizes the Lmes given the
bound M−max(n + 1). Then, the proposed strategy for clustering is
presented in the following algorithm.

Algorithm 2 Clustering Strategy

Input: S−1n+1 = {x
1−
n+1, · · · , x

i−
n+1, · · · , x

Np−
n+1 },M

−
max(n+ 1)

Output: θa∗,M∗, M∗ ≤ M−max(n+ 1)
1: M ← M−max(n+ 1)
2: θa∗,M∗ ← θa,M−max(n+1)
3: L∗mes ← Lmes(θa,M−max

)
4: while M > 1 do
5: M ← M − 1
6: Compute θa,M using k-means
7: if Lmes(θa,M ) ≥ L∗mes then
8: θa∗,M∗ ← θa,M
9: L∗mes ← Lmes(θa,M )

10: end if
11: end while

Merging: Depending on the clustering scheme, dynamics and
measurementmodels, onemay observe several closely distributed
mixture modes in the posterior pdf. To identify the right modes
to be merged, we define the following normalized error met-
ric (Hanebeck & Briechle, 2003) as a measure of similarity be-
tween modes i and j. D(i, j) =

∫
(Gi(x,µi,Pi)−Gj(x,µj,Pj))2dx∫

Gi(x,µi,Σi)2dx+
∫
Gj(x,µj,Σj)2dx

. Clearly,
D(i, j) = 0 when the components i, j are identical. It also has an
upper bound at 1. Mixture modes that are closely spaced can be
merged whenever the value of normalized error metric falls below
a predetermined tolerance (tol).

4. Numerical examples

In this section, the particle Gaussian mixture filter is applied to
three test case problems to evaluate the filtering performance. Due
to their ease of implementation and extensive use as benchmark
filters, the UKF and PF are included for comparison. The PGM filter
is also compared with Gaussian mixture filters such as a GMUKF
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and the blob filter. The estimation results are assessed for accuracy,
consistency and informativeness as described below.

(1) Accuracy: A Monte Carlo averaged root mean squared error
(Erms(t)) is considered for evaluating the accuracy of the estimates.
The value of Erms(t) is computed over a set of NMo Monte Carlo runs

as Erms(t) =
√

1
NMo

∑NMo
j=1 ∥X̂ j(t)− µ̂j(t)∥

2
2.

Here, X̂ j(t) and µ̂j(t) represent the actual and estimated states
at the time instant t during the jth Monte Carlo run. The time
averaged error (Erms) can be computed from Erms(t) as Erms =
1
T

∑T
t=1Erms(t).

(2) Consistency: The consistency of the filtered pdf is examined
using the normalized estimation error squared (NEES) test. For a
unimodal state pdf, the NEES test is evaluated using the χ2 test
statistic (βj,t ) given by βj,t = (X̂ j(t)−µ̂j(t))T (P̂ j(t))−1(X̂ j(t)−µ̂j(t)).
The term P̂ j(t) in the above expression represents the covariance
of the unimodal filtered pdf at time t during jth Monte Carlo run.
The Monte Carlo averaged NEES test (βt ) is computed from this
expression as βt =

1
NMo

∑NMo
j=1 βj,t .When the state vector x ∈ ℜd is

normally distributed, the product NMoβt has a χ2 distribution with
dNMo degrees of freedom. Hence, the consistency of the filtered
pdf can be tested by determining whether βt falls within probable
bounds determined from the corresponding χ2 random variable.

(3) Informativeness: Two separate metrics are considered for
evaluating the informativeness of estimates in the present work
namely the averaged likelihood of the truth (L(t)) and volume of
2 − σ uncertainty region (Vσ2). The averaged likelihood of the
truth over NMo Monte Carlo runs may be computed as L(t) =
1

NMo

∑NMo
j=1 π

j
t (X̂ j(t)). Here π j

t represents the conditional state pdf at
time t in the jth Monte Carlo run. The time averaged likelihood is
computed from the above expression as L̂ = 1

T

∑T
t=1L(t).When the

state pdf is in the ensemble form, the likelihood is computed using
a unimodal Gaussian pdf characterized by the sample mean and
covariance of the collection of states. For a well separated GMM
pdf, the value of Vσ2 can be computed as V jσ2(t) =

∑Mt
i=1|2Σi|,

whereMt is the number of modes. Here |.| represents the determi-
nant of the enclosed square matrix. We compute the Monte Carlo
averaged 2−σ volume as Vσ2(t) =

∑NMo
j=1 V

jσ2(t).We compute the
corresponding time averaged value V̂σ2 as V̂σ2 = 1

T

∑T
i=1Vσ2(t).

4.1. Example 1

In this problem, we consider the estimation of the one dimen-
sional discrete time nonlinear dynamic system given by

xk+1 =
xk
2
+

25xk
(1+ x2k)

+ 8 cos(1.2k)+ νk (20)

A measurement model aiding the estimation of the system is
specified as zk =

x2k
20 + nk.

The process noise term νk and measurement noise term nk are
assumed to be independent zero mean Gaussian random variables
with covariances Q = 10 and R = 1, respectively. This example or
its variants have been studied in several publications before (Aru-
lampalam et al., 2001; Gordon et al., 1993). Two variants of the
PGM filter, i.e, PGM1-UT and PGM1, an SIR filter, blob filter and a
UKF are simulated to estimate the test case 1 system for a duration
of 52 time steps over 50 Monte Carlo runs. The initial state of
the system is assumed to be distributed as P0(x) = N (0, 2).
Measurements are recorded at every other instant. The SIR and
the PGM filters are implemented with a set of 50 particles. The
upper bound on the number of mixture components Mmax is set
to be 3. For blob filter, 50 Gaussian components were used with a
covariance upper bound Pmax = 10−6. The parameter values used
in the implementation of the UKF may be found in Table 1.

Table 1
UKF parameters.

α β λ

1.3 1.5 0.2

Table 2
Example 1: Results.

Erms βt,c (%) L̂ V̂σ2
PGM1-UT 6.4513 78.85 0.1209 62.1753
PGM1 6.2859 84.62 0.1253 60.3453
PF 6.5488 46.15 0.1063 79.8123
UKF 8.3279 36.54 0.0488 103.8405
Blob Filter 6.5243 46.15 0.1827 0.0001

The values of Erms(t) plotted in Fig. 2(a) indicate good tracking
performance by the PGM filters. The PGM filters, the PF and the
blob filter are seen to offer comparable tracking performance. The
Monte Carlo averaged NEES results plotted in Fig. 2(b) show that
the UKF and PF frequently oversteps the upper boundwhichmarks
inconsistent estimates. Furthermore, βt computed using the PF
estimates are found to frequently exhibit peaks several orders of
magnitude larger than the 99% upper bound, indicating covariance
collapse. The averaged likelihood L(t) and the volume V2σ plotted
in Fig. 2(c) and (d) show that only the blob Filter provides more
informative estimates than the PGM-1 and PGM-1 UT.

The time averaged values of RMSE Erms, likelihood L̂, and the 2σ
volume for each filter are listed in Table 2. Also included is the frac-
tion (βc%) of the time instants duringwhich the computed averaged
NEES result stayed within the 99% limits, i.e., βc% =

∑T
t=11Ub0.99(βt )

T
where 1Ub0.99(βt ) is the indicator function which equals 1 when
βt < Ub0.99 and zero otherwise. The results presented in Table 2
clearly show that the PGM filter implementations offer accurate,
consistent and informative estimates.

4.2. Example 2

In this example, the PGM filters are employed in the estimation
of a 3 dimensional Lorenz 63 model for atmospheric convection.
The noise perturbed dynamics of the Lorenz 63 system is described
in the following set of equations:

ẋ1 = α(−x1 + x2), α = 10 (21)
ẋ2 = βx1 − x2 − x1x3, β = 28
ẋ3 = −γ x3 + x1x2 + Γ (t), γ = 8/3

A scalar nonlinear measurement model (zk) is considered which
is given by zk =

√
x1(t)2 + x2(t)2 + x3(t)2 + νk. Note that

since the measurement function is nonlinear, the PGM filter will
not be asymptotically exact. However it is still of interest to
study the performance of the filter in the nonlinear case. The
process and measurement noise covariances are both set to be
equal to 1. The initial state of the system is characterized by
the bimodal pdf p0(x) = 0.9G(x, [−0.2,−0.2, 8]T ,

√
0.35I3×3) +

0.1G(x, [0.2, 0.2, 8]T ,
√
0.35I3×3). The state of the system is up-

dated at a time step∆t = 0.01 s. The measurements are recorded
at the interval of ten time steps. This example has been considered
previously in Terejanu et al. (2011). The PGM1 filter, PGM1-UT
filter, the PF, the blob filter and a conventional Gaussian mixture
UKF (Alspach & Sorenson, 1972) are employed in the estimation
of the Lorenz63 system. The PGM filters and the SIR filter are
implemented with 300 particles and Mmax is set to be 3. The
UKF is implemented using the parameters listed in Table 1. The
blob filter is implemented by re-approximating the initial pdf
using 300 Gaussians with a maximum covariance Pmax = 0.0005
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Fig. 2. Example 1: Results.

× I3. The values of Erms(t) computed over 50 runs and plotted in
Fig. 3(a) show that estimation errors for PGM1 and PGM1-UT are
the smallest among the four filters. TheMonte Carlo averagedNEES
results are plotted in Fig. 3(b). It is observed that the NEES test
statistic βt for the PF, the blob filter and the mixture UKF overstep
the y = Ub0.99 line early in the simulation.

The averaged likelihoods (L(t)) and Vσ2 volumes plotted in
Fig. 3(c), (d) show that the PF has the highest average likelihood

Fig. 3. Example 2: Results.

whereas the Blob filter has the smallest Vσ2 volume. However, as
the NEES results of the PF and the blob filter are seen to stay above
the 102 for around 85% of the time. The higher likelihoods and the
small Vσ2 of the PF should be understood as a consequence of its
covariance collapse. The consistency fractions (βc%) and the time
averaged values of other performance metrics for each filter are
listed in Table 3. The results clearly indicate that the PGM filters
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Table 3
Example 2: Results.

Erms βt,c (%) L̂ V̂σ2(×104)

PGM1-UT 14.3886 97.06 0.0038 8.644
PGM1 14.1148 97.06 0.0045 1.046
PF 15.5425 11.76 0.0088 0.6737
GMUKF 15.3528 13.73 0.0019 9.3291
Blob Filter 17.9477 9.80 0.0070 1.09× 10−11

aremore accurate and consistent than the PF,mixtureUKF andblob
filter.

4.3. Example 3

In this test case, the PGM filters are employed in the estima-
tion of a Lorenz96 system. The noise perturbed dynamics of the
Lorenz96 system is given by

ẋi = xi−1(xi+1 − xi−2)− xi + F + Γ (t), (22)

where i = 1, 2, . . . , 40 (Lorenz, 1995). The state variables are
assumed to be cyclical so that x0 = x40, x−1 = x39, x41 = x1. The
term F represents a constant external forcing. In the present work,
we set F = 8 at which the system is chaotic. The covariance of
the zero mean Gaussian white noise is assumed to be Q = 10−2.
A linear measurement model is employed in the estimation of the
Lorenz96 system and it is defined as

zk = HXk + νk, Hi,j =

{
1, j = 2i− 1
0, otherwise.

where H ∈ R20×40. The measurement noise is assumed to be
a zero mean Gaussian random vector with a covariance R =
10−2I20×20 where Ii,j = δi,j. The initial state pdf is given by p0(x) =
G(x, µ0, P0), where µ0 = F

[
1 · · · 1 · · · 1

]T
, µ0 ∈ R40×1 and P0 =

10−3I40×40. The state of the system is updated at ∆t = 0.05 time
units andmeasurements are recorded at the interval of 1 time unit.
The performance of the PGM-1 filters is compared to that of an
EnKF (Burgers, Van Leeuwen, & Evensen, 1998), an SIR filter and
a blob filter. The PGM-1 filters and the EnKF were equipped with a
set of 2000 particles. The value ofMmax is kept at 2 in order to keep
the computational cost low. The SIR filter was implemented with
2000 particles. The blob filter was employed with 2000 Gaussians
each having a maximum covariance Pmax = 10−4 × I40. The filters
were used to estimate the state of the system for a duration of
200 time steps over 50 Monte Carlo runs. The number of time
steps is kept low in order to keep the computational cost of Monte
Carlo simulations manageable. The PF and the blob filter were
found to undergo covariance collapse after the first measurement
was recorded. This was seen to be the case even after using 4000
particles for the PF and using 4000 Gaussians with a maximum
covariance of I40 for the blob filter. From the Erms(t) plots in 4(a),
it can be observed that the tracking performance of the PGM filters
and the EnKF are comparable. The Monte Carlo averaged NEES test
statistic βt is plotted in Fig. 4(b). show that the EnKF and the PGM1
filter offer comparable performance. The plots of log(L(t)) and Vσ2
given in Fig. 4(c), (d) show that, in comparison to the EnKF, the
PGM filters perform better in terms of the v2σ volume, whereas
the EnkF estimates have the highest averaged likelihoods. The time
averaged values of the performance metrics are listed in Table 4
alongwith the consistency fractions. The performances of the EnkF
and the PGM filters are seen to be comparable. It may be observed
that the EnKF is quite similar to a unimodal PGM Filter as they both
rely on particle uncertainty propagation andKalmanmeasurement
update.

Fig. 4. Example 3: Results.

Table 4
Example 3: Results.

Erms βt,c (%) ˆlogL ˆlogVσ2
PGM1-UT 18.0069 80.69 89.6553 152.8588
PGM1 18.0452 70.30 89.6227 152.7732
EnKF 18.1055 81.19 89.8193 152.8034

5. Conclusions

A novel Gaussianmixture-particle PGM algorithm for nonlinear
filtering has been presented. During the prediction step, the PGM
filter uses an ensemble of particles to propagate the prior uncer-
tainty and recovers a GMM representation of the propagated pdf
by clustering. Measurements are incorporated through a Kalman
update of themixturemodes to arrive at the posterior pdf. The PGM
approach is not susceptible to the issue of particle depletion asso-
ciated with particle filters. The PGM filter is applied to three test
cases and offers superior estimation performance in comparison
to UKF, PF the blob filter and a mixture UKF.
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