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Abstract

An asynchronous stochastic approximation based (Frequentist) approach is proposed for mapping using noisy mobile sensors
under two different scenarios: 1) perfectly known sensor locations and 2) uncertain sensor locations. The frequentist methodology
has linear complexity in the map components, is immune to the data association problem and is provably consistent. The
frequentist methodology, in conjunction with a Bayesian estimator, is applied to the Simultaneous Localization and Mapping
(SLAM) problem of Robotics. Several large maps are estimated using the hybrid Bayesian/ Frequentist scheme and results
show that the technique is robust to the computational and performance issues inherent in the purely Bayesian approaches to
the problem.

1 Introduction

The problem of mapping of large distributed environ-
ments using mobile noisy robotic sensors is addressed
in this paper. Two case are considered: (a) the sensor
location is known perfectly and (b) the sensor loca-
tion is uncertain. We propose a frequentist approach
for the solution of the problem and establish perfor-
mance guarantees for the technique. The methodology,
in conjunction with a Bayesian estimator, is applied
to the so-called Simultaneous Localization and Map-
ping (SLAM) problem of robotics and several large
distributed (dense) environments are mapped using the
hybrid methodology to show its efficacy.

In the past several years, the topic of mobile sensor
networks has been actively researched. In particular,
distributed sensing and motion planning algorithms
for such multiple sensor systems in uncertain environ-
ments have been devised [1–10]. Much of this work has
concentrated on the discrete problems such as target
tracking [3,9,10] while relatively fewer researchers have
concentrated on the sensing of a distributed (dense)
environment [2, 6, 7]. The sensing methodology used in
much of this literature is the Kalman filter which is the
Bayes filter for linear Gaussian systems. However, it

? This paper was not presented at any IFAC meeting. Cor-
responding author: S. Chakravorty

Email addresses: schakrav@aero.tamu.edu (S.
Chakravorty), roshmik@neo.tamu.edu (R. Saha).

can be shown that the Bayesian problem becomes com-
putationally prohibitively expensive to solve in dense
and large dimensional environments when the location
of the sensors is uncertain. This is the case because the
estimates of the components of the environment get cor-
related requiring that we maintain a high dimensional
distribution on the different realizations of the environ-
ment, which is computationally infeasible for large dense
maps. Further, getting rid of these correlations leads to
inconsistent estimators (please see section III A of this
paper for a simple example illustrating this issue). Fur-
ther, under sensor location uncertainty, there arises the
issue of data association: the problem of determining
the unique one to one correspondence between obser-
vations and environmental components. The Kalman
filter is especially brittle when faced with this problem
and suitable data association techniques have to be used
in conjunction with the filter [11, 12]. To the best of
our knowledge, the problems mentioned above have not
been addressed in the mobile sensor networks literature.
In this paper, we propose an alternative asynchronous,
stochastic approximation based (frequentist) approach
to the problem of sensing large and dense environments,
under sensor noise as well as uncertainty in the location
of the sensor. Though we only consider the case of a
single sensor, the methodology can be generalized to the
multiple sensor case in a straightforward fashion and is
left for future research. It is shown that the technique
is robust to the computational problems inherent with
the Bayesian approach to the sensing problem while
provably retaining its performance guarantees, vis a vis
consistency and immunity to the data association prob-
lem, in large and dense maps.
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In the Robotics community, researchers have focused
on the mapping problem without sensor location un-
certainty [13] as well as with sensor location uncer-
tainty [11, 12]. The latter problem is popularly known
in the community as the Simultaneous Localization and
Mapping (SLAM) problem, in which the robot local-
izes itself within an unknown map while simultaneously
estimating the unknown map. There are two main cate-
gories of approaches to SLAM: recursive and trajectory
based, depending on whether the method tracks the
entire trajectory of the robot, or only the current state/
pose. In the recursive Kalman filter/ Information filter
based approach [11, 12, 14, 15], the map is appended to
the filter as a parameter and the joint pose-map pdf
is estimated using the Kalman recursion in either the
covariance or the information matrix form. In either
form, the computational complexity of the algorithms
is intractable if the consistency of the filter has to be
maintained, since neglecting the cross correlation terms
in the extended Kalman filter (EKF) or the off-diagonal
terms in the sparse extended Information filter (SEIF)
leads to a loss of consistency. The Rao Blackwellized
Particle Filter (RBPF) based SLAM algorithms, a tra-
jectory based SLAM algorithm, keep track of the entire
trajectory of the robot which decorrelates the observa-
tions of the various map components [16, 17]. Another
trajectory based method, called Consistent Pose Esti-
mation (CPE) [11] relies on maintaining a graph on the
poses at which various scans of the map were made and
then, optimizing the inter-node distances such that the
likelihood of the observed data is maximized [18, 19].
The CPE method is an offline technique while the RBPF
based SLAM techniques are inconsistent over long time
horizons as the filters become inconsistent due to the
“particle depletion” problem. Both these techniques
tend to replace the “curse of dimensionality” inherent
in the Bayesian formulation with a “curse of history”.
It can be seen from the previous discussion that the cen-
tral issue with the Bayesian formulation of the SLAM
problem is the fact that computational complexity and
consistency act at cross purposes, and alleviating one
tends to worsen the other. The frequentist mapping
methodology of this paper is applied to the SLAM
problem using a “first localize -then map” philosophy
wherein the robot is first localized with respect to a set
of features in the map to obtain a belief distribution
on the location of the sensor, and then this belief dis-
tribution is used by the frequentist technique to map
the rest of the dense environment. The hybrid SLAM
method proposed here alleviates the central “computa-
tion vs consistency” issue. The frequentist part of the
algorithm has complexity linear in the map and is prov-
ably consistent. The complexity of the Bayesian part of
the formulation can be kept under control owing to the
sparseness of the set of landmarks/ features. Further,
the frequentist part of the formulation is immune to the
data association problem, while the Bayesian part is ro-

bust owing to the sparseness of the features/ landmarks.

The use of frequentist estimators based on recursive
maximum likelihood (RML) or recursive least squares
(RLS) is standard practice in the Hidden Markov
Model (HMM) literature [20], and an application of this
methodology in the mapping/ SLAM context is made in
the reference [21]. These methods usually need to eval-
uate the filter derivative which is an O(N2) operation,
where N is the number of particles used to represent
the pdf of the state. This is usually impractical and
only through recent advances in the particle filtering
community, the above operation can now be done with
O(NlogN) complexity [22]. In contrast, the method
presented here does not require the filter derivative, and
if the Bayesian part of the hybrid formulation is im-
plemented using a particle filter, the complexity of the
frequentist algorithms is O(N), where N is the number
of particles used to represent the robot state pdf. This
is due to the fact that general HMM techniques do not
recognize, or exploit, the special structure inherent in
the Mapping problem, in particular, that the problem
may be solved in two steps by: a) estimating the sensor
location independently of the rest of the environment,
either through a global sensor such as Global Posi-
tioning system (GPS) or by localizing the sensor with
respect to features in the environment, and b) mapping
the rest of the environment based on this estimate.

The rest of the paper is organized as follows. In sec-
tion II, we present the environment/ sensor model and
the problem formulation. In section III, we propose the
frequentist mapping technique. In section IV, we es-
tablsih the consistency of the frequentist approach. In
section V, we apply the frequentist technique, in con-
junction with a Bayes filter, to the SLAM problem, and
present several experiments wherein large environments
are mapped using the hybrid methodology. Preliminary
versions of this paper have been published in [23–25]. In
references [23, 24], the pure mapping problem was ad-
dressed, i.e., there was no uncertainty in the sensor loca-
tion while in [25], a preliminary version of the problems
in this paper were addressed. In particular, this paper
considers the problem of dense maps and addresses the
issue of data association in such maps, in contrast to [25],
while also providing several validating examples.

2 Preliminaries

In this section, we shall outline the model that we use for
the environment and the sensor. Next, we shall formulate
the problems that we wish to address in this paper.
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2.1 Model

Consider a single autonomous agent and let its state
be denoted by the variable s (also sometimes called the
robotic pose), and let the state of the environment be
denoted by the variable Q = {q1, · · · , qM}, where qk

are components of the environment (for instance, these
would be the individual grids in a occupancy grid de-
composition of the environment) and can take one of D
discrete values. The environment is assumed to be sta-
tionary and its components mutually independent, i.e.,

p∗(Q) =
M∏
i=1

p∗(qi), (1)

where p∗(Q) represents the probability of the realization
Q of the environment, and p∗(qi) represents the proba-
bility of realization qi for the ith component of the envi-
ronment. It can be anticipated that a large part of most
environments can be modeled in this fashion. Any de-
terministic environment trivially satisfies the above as-
sumption. The probability of observing the ith environ-
mental component in the state q̂i, where q̂i can also take
one of D values, and given that it is observed from the
pose s, is given by:

p(q̂i/s) =
∑

z

1(q̂i/s, z)p(z/s), (2)

where z is one of the finitely many observtions that are
possible from state s, p(z/s) denotes the likelihood of
having the observation z given that the observation is
made from state s, and 1(q̂i/s, z) is the indicator function
for q̂i taking a certain value given that the observation
is z and is made from state s.

The observation likelihood p(z/s) can be obtained in
terms of the map probabilities as follows (using the Law
of Total Probability):

p(z/s) =
∑

q1···qM

p(z/s, q1, · · · qM )p∗(q1) · · · p∗(qM ). (3)

Plugging Eq. 2 into Eq. 3 implies:

p(q̂i/s)

=
∑

z

1(q̂i/s, z)
∑

q1,..,qM

p(z/s, q1, .., qM )p∗(q1)..p∗(qM )

=
∑

q1,..,qM

∑
z

1(q̂i/s, z)p(z/s, q1..qM )p∗(q1) · · · p∗(qM ).(4)

The likelihood p(z/s, q1, · · · qM ) denotes the probability
of an observation z given the particular realization of the
environment Q = {q1, · · · , qM}, and can be extracted
from the noise characteristics of the sensor model. Please
see Section IV A to see how this can be done. Note

∑
z 1(q̂i/s, z)p(z/s, q1 · · · qM ) = p(q̂i/s, q1 · · · qM ), and

plug into the equation above to obtain:

p(q̂i/s)

=
∑

q1..qM

p(q̂i/s, q1..qM )p∗(q1)..p∗(qM ),

=
∑
qi

p∗(qi)
∑

qk,k=1..M,k 6=i

p(q̂i/s, q1, ..qM )p∗(q1)..p∗(qM ).

(5)

We have∑
qk,k=1..M,k 6=i

p(q̂i/s, q1, ..qM )p∗(q1)..p∗(qM )

= p(q̂i/s, qi). (6)

The above equation and Eq. 5 imply:

p(q̂i/s) =
∑
qi

p(q̂i/s, qi)p∗(qi), (7)

which can be written in compact matrix form as:

P̂i(s) = A∗
i (s)P

∗
i . (8)

The vector P̂i(s) stacks the observation probabilities
p(q̂i/s) of the ith map component, and the matrix A∗

i (s)
is the true observation model of the ith component when
observed from pose s. It is a D x D matrix whose (m,n)th

element is p(q̂i = m/qi = n, s). By true observation
model A∗

i (s), we mean the observation model formed
by using the true map probabilities P ∗ = {P ∗

1 , · · ·P ∗
M}.

This is the fundamental observation equation for the
mapping problem. Note that, in general, the observa-
tion matrix for the ith map component, A∗

i (s), depends
on the location of the sensor s, the true map probability
for the ith component, P ∗

i , as well as the map proba-
bilties for the other map components. In general, the
probabilities of a map component are affected only by
its neighbouring components, the actual number that
affect the component depend on the sensor. Given an
accurate sensor such as a laser range finder, the number
is extremely small while for noisy sensors such as Sonar,
the number is much higher. Please see Section IV A
to see how such an observation model can be obtained
given the statistical noise characteristics of the sensor,
the sensor location and the map probabilities.

Remark 1 The above formulation of the observation
model is very general and can be applied to most sensing
scenarios. In certain special cases, the observation mod-
els A∗

i (s) for the ith map component may be independent
of the rest of the map components, for instance, in sparse
maps. In such cases the analysis is much easier and the
conditions required for consistency are weaker. This spe-
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cial case was considered in the reference [23].

2.2 Problem Formulation

In this paper, we will address the following problems:

Problem 1 Mapping with Known Sensor Loca-
tions: Given the time varying pose/ location of the
sensor, {st}, and the noisy sensor readings from these
poses, {zt}, how do we construct a recursive estimator
for the map probabilities P ∗

i ?

Problem 2 MappingwithUncertain Sensor Loca-
tions: Given the time varying belief (probability density
function: pdf) on the location/ pose of a sensor, {bt(s)},
and the noisy readings {zt} from the belief states, how do
we construct a recursive estimator for the map probabil-
ities P ∗

i ?

The primary difference between the two problems above
is the uncertainty in the pose of the sensor. In the first
case, it is perfectly known while in the second case it is
uncertain and instead, specified by a pdf. The pdf on the
location/ pose of the sensor may be specified either by
localizing the sensor with respect to some landmarks/
beacons in the map (see application to SLAM in Section
V), or through a global sensor such as GPS. Addressing
the problems above allows us to avoid the “Complexity
vs Consistency” trade-off inherent in the Bayesian solu-
tion of the problems, in particular, Problem 2.

3 The Frequentist Mapping Approach

In this section, we shall outline our approach to the two
problems formulated in the previous section. Our ap-
proach relies on averaging, or the Law of Large Numbers,
and hence, is termed frequentist. In the first subsection,
we propose our solution to the problem of mapping with
known sensor locations and generalize it to the problem
of mapping with uncertain sensor locations in the next
subsection.

3.1 Mapping with Known Sensor Locations

In this section, first, we shall derive the equations for
the case when the sensor makes observations from a
single pose and then generalize it to the case when the
pose is time varying.

Please recall the observation model for a particular map
component, Eq. 8. This equation is the fundamen-
tal equation for the frequentist approach and pro-
vides an avenue for estimating the true map prob-
abilities P ∗

i . Suppose we make repeated observations
of the ith component from pose s. We could count the

number of times that we observe the ith component in
its various states, and form a consistent estimate of the
observation probability vector P̂i(s) by averaging, i.e.,

P̂i(s) = Ez[1(q̂i/s, z)] ≡ Ez[ci(s, z)]

= lim
N

1
N

N∑
t=1

1(q̂i,t/s, zt). (9)

In the above, given an observation z, the observation
vector ci(s, z) = 1(q̂i/s, z) (it will be clear when we go to
the uncertain pose case as to why choose this notation),
where 1(q̂i/s, z) = [1(q̂i = 1/s, z) · · · 1(q̂i = D/s, z)]′ is
a D-dimensional vector indicator function. The above
equation is correct due to the Law of Large Numbers.
Then, using the knowledge of A∗

i (s), we can obtain the
true environmental probabilities P ∗

i as

P ∗
i = A∗

i (s)
−1P̂i(s). (10)

Next, we may relax the assumption that the observa-
tions are made from the pose s and have that the obser-
vations are made from the time varying poses {st}, with
true observation models A∗

i (st). Recall that by true ob-
servation model A∗

i (.), we imply the observation model
constructed using the true map probabilities P ∗. If we
keep track of the relative frequencies of observations of
the ith component in its various different states, then
the estimate of the true probabilities P ∗

i can be recov-
ered asymptotically using a time averaged observation
model as follows:

P ∗
i = Āi

−1
P̂i, (11)

P̂i = lim
N

1
N

N∑
t=1

ci(st, zt), (12)

Āi = lim
N

1
N

N∑
t=1

A∗
i (st). (13)

In order to derive the above expression, note that if we
interpret the frequency of seeing the ith map component
in its q̂i level, π(q̂i), during the course of the mapping
experiment as a probability, and if we also interpret the
frequency of the robot being in a state s, π(s), as a prob-
ability, then it follows using the simple rules of condi-
tional probability that:

π(q̂i) =
∑
qi,s

p∗(q̂i/qi, s)p∗(qi)π(s) =∑
qi

[
∑

s

p∗(q̂i/qi, s)π(s)]p∗(qi). (14)

The state st evolves according to a Markov Chain and
given that the chain is ergodic (i.e., converges to a sta-
tionary distribution for all initial distributions), the left
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hand side π(q̂i) in the above equation is given by Eq.
12, and the matrix [

∑
s p∗(q̂i/qi, s)π(s)] is given by Eq.

13, and hence, the estimation equations for the time
varying pose case follow.

The estimation equation for recovering the map proba-
bilities, Eq. 11, is an asymptotic equation, i..e, it is true
only as N → ∞. However, we need a recursive estima-
tor for the map probabilities for all N and still provide
the guarantee that the map probabilities converge as
N →∞. This may be done as follows. Note that essen-
tially we want to solve the equation P̂i = ĀiP

∗
i for P ∗

i .
Given P̂i, Āi, and that −Āi is Hurwitz, a recursive way
to solve the equation is the following:

Pi,t+1 = Pi,t + γ(P̂i − ĀiPi,t). (15)

To see why this is the case, note that for small γ, the
above is the forward Euler approximation of the ordinary
differential equation (ODE):

Ṗi = P̂i − ĀiPi. (16)

Transforming the co-ordinates such that P ∗
i is the origin,

it is easy to see that P ∗
i is the unique globally exponen-

tially stable equilibrium of the ODE if −Āi is Hurwitz
and full-rank. However, we do not have the asymptotic
values P̂i and Āi at any finite time during the algorithm’s
progress. Thus, at time t, given the pose of the sensor st

and the reading zt, we approximate P̂i and Āi by their
one step noisy estimates, i.e.,

P̂i ≈ ci(st, zt), Āi ≈ Ai(st). (17)

Utilizing the above approximations in Eq. 16, the true
environmental probabilities P ∗

i can be estimated using
the following recursion for Pi,t, the estimate of P ∗

i at
time t, given A∗

i (st) is positive definite (which is true
under mild conditions, see Section IV).
Estimator E1:

Pi,t = ΠP{Pi,t−1 + γt(ci(st, zt)−A∗
i (st)Pi,t−1)}, (18)

where P represents the space of probability vectors in
<D, and ΠP(.) denotes a projection onto this compact
set. We need the projection operator since the map
probability estimates Pi,t need to be probability vectors
and the unconstrained recursion above need not result
in a probability vector. The sequence {γt} is usually
of the form at−α, α < 1, where a and α are learning
rate parameters and standard for any stochastic ap-
proximation algorithm. The “noisy” algorithm above is
a Stochastic Approximation algorithm and its conver-
gence to the true map probabilities can be shown using
techniques from Stochastic Approximation [26, 27]. We
mention here that stochastic approximation algorithms

as above are used in Q-learning, neural networks and
system identification [28].

However, there remains the problem of using the “true”
observation models A∗

i (st) in order to form the esti-
mates. This is unreasonable since it depends on the true
map probabilities that we are trying to estimate. How-
ever, the estimates Pt = {Pi,t} of the map probabilities
can be used in Eqs. 6 -8 to form the observation models
Ai(st, Pt) as an approximation of the true observation
models A∗

i (st). Hence, we run the estimator E1 above
using the approximate observation models Ai(st, Pt)
instead of the true observation models A∗

i (st). These
models can be inferred from the model of the particular
type of sensor used for sensing the environment [13]
(please see Section V A).

Remark 2 A few details regarding the projection oper-
ator ΠP is provided in this remark. Note that p(qi =
1) + · · · p(qi = D) = 1 and all of the terms are pos-
itive since they are probabilities. Then, we may elimi-
nate one of the probabilities by replacing p(qi = D) by
1−p(qi = 1)+· · · p(qi = D−1) and having the constraint
that every term is positive and their sum is less than one.
This is easier understood in the 2-d case, i.e., when any
map component can take one of only two values 0/1. In
this case, P (qi = 0) = pi2 = 1−P (qi = 1). Denoting the
probability p(qi = 1) by Pi, the constraint becomes that
0 ≤ Pi ≤ 1. Thus, in that case, the map probabilities can
be denoted by the vector P = [P1, · · · , PM ], comprised
of the occupancy probabilities of each of the map compo-
nents. Then, the above algorithm reduces to the following:

Pi,t+1 = ΠP [Pi,t + γt{ci(st, zt)− p(q̂i = O/qi = O, st)Pi,t

−p(q̂i = O/qi = E, st)(1− Pi,t)}],
(19)

where ci(st, zt) = 1(q̂i,t = 0/st, zt), i.e., whether the
grid is occupied or not, and ΠP [.] represents projection
onto the interval [0, 1]. Many other possible projection
mechanisms are possible but this is the method we use
throughout this paper.

3.2 Mapping with Uncertain Sensor Locations

In this section, we relax the assumption that the pose of
the robot is known perfectly. Instead, we assume that we
are given a belief, i.e., a probability distribution, on the
possible poses of the robot. Given the belief on the pose
of the robot, bt(s) at time t, and a reading zt of the en-
vironment, the frequentist mapping method is now used
to map the (dense) environment Q. However, it is im-
mediately apparent that there is an inherent “data as-
sociation” problem with the mapping problem in this
scenario. The observation, q̂i, of an environmental com-
ponent qi is no longer certain, since it varies with the
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pose of the robot. Consider the simple situation illus-
trated in Fig. 1. The map component q1, given read-
ing z2, is empty or occupied depending on whether the
robot is at pose s1 or s2 respectively. However, since we
have uncertainty in the location of the sensor, we cannot
be sure as to whether the reading of q1 is empty or oc-
cupied. Thus, the uncertainty in the observation of the
map components has to be incorporated into the map-
ping technique. This may be done as follows. Given the
uncertainty in the pose of the robot b(s) and the reading
of the environment z, the observation of the ith compo-
nent of the environment q̂i is given by the probability
vector (derived using the rules of conditional probabil-
ity, and Bayes rule)

c∗i (b(s), z) ≡ [p(q̂i = 1/b, z), · · · p(q̂i = D/b, z)]′

=
∑

s

1(q̂i/s, z)
p∗(z/s)b(s)

p∗(z/b)
, (20)

p∗(z/s) =
∑

q1,··· ,qN

p(z/s, q1, · · · qN )p∗(q1) · · · p∗(qN ),(21)

where p∗(z/b) =
∑

s p∗(z/s)b(s) is the factor used
to normalize ci(.) and p∗(z/s) is the true likeli-
hood of the observation z given that it is made
from pose s. In order to derive the above expres-
sion, note that using the thorem of total probabil-
ity, p(q̂i/b, z) =

∑
s p(q̂i/s, b, z)p(s/z, b). We can ex-

pand the term p(s/z, b) using Bayes rule which gives
us p(s/z, b) = p∗(z/s)b(s)

p∗(z/b) , after using the fact that
p∗(z/s, b) = p∗(z/s), and p(q̂i/s, b, z) = 1(q̂i/s, z).
As in the perfect pose information case, averaging over
all observations z (which can be formed by a time av-
erage due to the Law of Large Numbers), allows us to
estimate the probability of observing state q̂i given the
belief state b(s), i.e.,

P̂i(b) = Ez[c∗i (b, z)] = lim
N

1
N

N∑
t=1

c∗i (b, zt). (22)

Note that the above probabilistic description of the ob-
servation solves the “data association” problem: we are
no longer certain if the observed value of the ith map
component is in its kth level, instead we associate a prob-
ability with this observation. The probability of observ-
ing the map component qi at level q̂i, given the belief on
the pose b(s) is also given by

p(q̂i/b) =
∑

s

b(s)
∑

q1..qN

p(q̂i/q1..qN , s)p∗(q1) · · · p∗(qN ),

(23)

which can be written in compact matrix form as follows:

P̂i(b) = A∗
i (b)P

∗
i , (24)

s1

s2
s2

q1

q2

q1z1 z2

s1

q3

q2

q3

Fig. 1. The problem of data association

where

A∗
i (b) =

∑
s

A∗
i (s)b(s). (25)

Note here that this equation is exactly analogous to
the frequentist mapping Eq. 8, wherein the exact pose
knowledge s has been replaced by the belief on the pose
of the robot b(s). The observation model A∗

i (s) is re-
placed by the expected observation model with the ex-
pectation being taken with respect to the belief on the
pose of the robot. Thus, similar to the case with perfect
pose information, if we were to remain in the belief state
b(s) and make repeated observations of the ith compo-
nent of the environment, we would be able to recover
the left hand side of the above Eq. 24, P̂i(b), by aver-
aging the (probabilistic) observations of the ith compo-
nent, ci(b, zt) (cf. Eq. 22). Hence, the true environmental
probabilities may be recovered asymptotically by invert-
ing Eq. 24. Generalizing the situation to the case when
we have a time-varying belief on the pose of the robot,
bt(s), the true environmental probabilities can be esti-
mated recursively using the following analog of frequen-
tist estimator E1 .
Estimator E2

Pi,t = ΠP{Pi,t−1 + γt(c∗i (bt, zt)−A∗
i (bt)Pi,t−1)}, (26)

As in the pure mapping case, since the variables c∗i (bt, zt)
and A∗

i (bt) are dependent on the true map probabilities
P ∗

i , the estimator is actually run by using the current
estimate of the true observation models/ observation
likelihood. In other words, the above algorithm is run
using ci(bt, zt, Pt) and Ai(bt, Pt), where the current
estimate of the map probabilities Pt is used, instead
of the true map probabilities P ∗, in Eq. (20) to form
ci(bt, zt, Pt), and in Eqs. (23)-(24) to form Ai(bt, Pt).
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4 Consistency

In this section, the consistency of the frequentist map-
ping algorithm under uncertain robot poses is estab-
lished. In our context, consistency implies that the esti-
mated map probabilities converge to the true map prob-
abilities with probability one, or almost surely. We shall
prove the result using the powerful ODE method from
the stochastic approximation literature [26, 27]. To be-
gin, we present a short introduction of the method to
clarify the basic idea behind the method.
Consider the mapping algorithm from above, Eq. 26,
without the projection operation and using the estimates
of c∗i (.) and A∗

i (.), formed using the current map esti-
mates Pt, as mentioned at the end of the previous sec-
tion:

Pi,t+1 = Pi,t + γ[ci(Xt, Pt)−Ai(Xt, Pt)Pi,t], (27)

where Xt = (bt, zt), the 2-tuple consisting of the belief
state and the observation at any instant. It is easily seen
that the state of the algorithm Xt evolves according to
a Markov chain, whose transition probabilities, in gen-
eral, depend on the map probability estimates Pt. If the
learning rate parameter γ is small, then the value of the
map probabilities does not change quickly, and can be
assumed to be essentially equilibrated over N steps, and
then

Pi,t+N ≈ Pi,t +

γN(
1
N

)
N∑

k=1

[ci(Xt+k, Pt)−Ai(Xt+k, Pt)Pi,t], (28)

Then, using the law of large numbers, it follows that if
N is large enough:

1
N

N∑
k=1

[ci(Xt+k, Pt)−Ai(Xt+k, Pt)Pi,t]

≈ h̄∗i (Pt)− Āi(Pt)Pi,t, (29)

where h̄∗i (.) and Āi(.) are the averaged values of ci(.) and
Ai(.) respectively. Then, it follows that

Pi,t+N − Pi,t ≈ Nγ[h̄∗i (Pt)− h̄i(Pt)], (30)

where h̄i(Pt) = Āi(Pt)Pi,t, which happens to be the
forward Euler approximation (with step size Nγ) of the
differential equation:

Ṗi = h̄∗i (P )− h̄i(P ). (31)

The idea behind the method is that the asymptotic
performance of the estimation/ mapping algorithm can
be analyzed by analyzing the behaviour of the “mean/
average” ODE above. This method is very popular in

analyzing the behaviour of algorithms in many different
fields including reinforcement learning [28], neural net-
works [29], system identification and stochastic adaptive
control [26,27]. In the following, we analyze the frequen-
tist mapping algorithm using the ODE method.

Consider the mapping algorithm as presented previ-
ously:

Pi,t+1 = ΠP{Pi,t + γt[ci(Xt, Pt)−Ai(Xt, Pt)Pi,t]}, (32)

where Xt = (bt, zt) is the 2-tuple consisting of the belief
state and the observation at any instant. The mean true
observation probabilities of the ith map component and
the mean “current” predicted value are defined as:

h∗i (b, p) ≡ E∗
z [ci(b, z, P )] =

∑
z

p∗(z/b)ci(b, z, P ), (33)

hi(b, P ) ≡ Ez[ci(b, z, P )] = Ai(b, z, P )Pi

=
∑

z

p(z/b)ci(b, z, P ), (34)

where p∗(z/b) is the probability of an observation z given
the true map probabilities P ∗, and p(z/b) are the prob-
abilities given the estimate of the map probabilities P ,
and given that the belief state is b. Recall that ci(b, z, P )
is the vector containing the observation probabilities of
the ith map component in its various different states,
given that the belief on the robot pose is b, the reading
from the sensor is z and the estimate of the map proba-
bilities is P . Note that ci(b, z, P ) is the approximation of
the true observation probability vector c∗i (b, z, P ) where
the vector of true map probabilities, P ∗, is replaced by
the approximate map probabilities P (see the end of Sec-
tion II C). If the map probabilities were truly P , then if
we averaged Ci(b, z, P ) over all observations z, we would
obtain the quantity hi(b, P ). However, since the obser-
vation z is generated by the true map probabilities P ∗,
not P , we would obtain the quantity h∗i (b, P ) which is in
general, different from hi(b, P ). In fact, only at P = P ∗

are the two quantities equal and the algorithm uses this
fact to guide the map estimates towards the true map
probabilities. It can be seen that

p∗(z/b) =
∑

s,q1..qM

p(z/s, q1..qM )p∗(q1)..p∗(qM )b(s), (35)

p(z/b) =
∑

s,q1..qM

p(z/s, q1..qM )p(q1)..p(qM )b(s). (36)

In the following, for the sake of simplicity (the
extension is reasonably straightforward), we deal
exclusively with the 2-dimensional case, i.e.,
when each map component qi can take one of two
values 0/1. The map probabilities can now be
denoted by the vector P = [P1, P2....PM ], where Pi

denotes the probability that the ith map compo-
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nent takes value 1 (i.e., is occupied).

First, we make the following assumption.

A 1 Corresponding to every map probability P , let the
belief process bt have a stationary distribution π∞(b, P ).
Moreover, let the belief process be geometrically ergodic.
Let

h̄∗i (P ) =
∫

b∈Bi

h∗i (b, P )
dπ∞(b, P )
π∞(Bi, P )

, (37)

h̄i(P ) =
∫

b∈Bi

hi(b, P )
dπ∞(b, P )
π∞(Bi, P )

, (38)

where Bi are all the belief states that map component
i is observed from. In particular, the above assumption
implies that there exist K < ∞ , ρ < 1 such that

E[Ci(bt, zt, P )− h̄∗i (P )] ≤ Kρt,

E[Ai(bt, P )Pi − h̄i(P )] ≤ Kρt, (39)

i.e., the quantities Ci(.) and Ai(.) converge to their av-
erage values exponentially fast.

Define H̄∗(P ) = [h̄∗1(P ), · · · h̄∗M (P )]t, and H̄(P ) =
[h̄1(P ), · · · h̄M (P )]t. Then, under assumption A 1, it can
be shown that the asymptotic behaviour of the map-
ping algorithm is characterized by the solution of the
following ODE ( [27], pg. 187, Ch. 6, Theorem 6.1):

Ṗ = H̄∗(P )− H̄(P ). (40)

In particular, the following result holds.

Proposition 1 Let the point P = P ∗ be an asymptoti-
cally stable equilibrium of the ODE (40) with domain of
attraction D∗. Let C ⊆ D∗ be some compact subset of
D∗. Let the learning rate parameters {γt} be such that∑

t γt = ∞, and γt → 0 as t →∞. If the trajectories of
the mapping algorithm (32) enter the subset C infinitely
often, then the estimates Pt → P ∗ almost surely.

Hence, it is left for us to show that the set of true map
probabilities P ∗ = [P ∗

1 , ...., P ∗
M ] is an asymptotically sta-

ble equilibrium of ODE (40). In order to show this, we
will show that the linearization of the mean ODE (40)
about P ∗ is asymptotically stable and hence, so is the
nonlinear ODE ( [30], Chapter 3, Theorem 3.7). We limit
our treatment to the case when D = 2, i.e., the map
components can take one of two values. The gradient of
the vector field H̄∗(P )− H̄(P ) is defined by the matrix:

∇(H̄∗(P )− H̄(P )) = [∂i(h̄∗j (P )− h̄j(P ))]. (41)

We make the following assumption.

A 2 We assume that

∂i(h̄∗i (P )− h̄i(P )) < −ε, ∀ i, (42)

|
∑
j 6=i

[∂j(h̄∗i (P )− h̄i(P ))]| ≤ |∂i(h̄∗i (P )− h̄i(P ))|, (43)

where all the partial derivatives above are evaluated at
P = P ∗, and ε > 0 is a positive constant.

We will provide the justification of the above assump-
tions after the following proposition.

Proposition 2 Let assumption A 2 be satisfied. Then
the true map probability vector P ∗ is an asymptotically
stable equilibrium of ODE 40 with a non-empty region of
attraction D∗. Thus, if the mapping algorithm estimates
Pt visit a compact subset C ⊆ D∗ infinitely often, then
Pt → P ∗ almost surely, due to Proposition 1.

Proof: Under assumption A 2, the linearization of the
mean ODE (40) about P ∗ is row-dominant, and hence,
all its eigenvalues lie in the open left half plane and
their real parts are bounded atleast ε away from the
imaginary axis [31]. Therefore, it follows that P ∗ is an
asymptotically stable equilibrium point of the mean
ODE and hence, all the other results follow. Q.E.D

Finally, we furnish the justification for assumption A 2.
In order to do this, note that

∂j(h̄∗i (P )− h̄i(P ))

=
∫

b∈Bi

∂j(h∗i (b, P )− hi(b, P ))
dπ∞(b, P )
π∞(Bi, P )

. (44)

Consider the term ∂j(h∗i (b, P )−hi(b, P )) for some belief
state b. In the following to simplify notation, all the par-
tial derivatives are assumed to be evaluated at P = P ∗.
It may be shown that:

∂j(h∗i (b, P )− hi(b, P )) = −
∑

z

∂jp(z/b)ci(b, z, P ), (45)

where the partial derivative above is evaluated at P =
P ∗, and that:

∂jp(z/b) = p∗(z/b, qj = 1)− p∗(z/b, qj = 0), (46)

i.e., the difference in the probabilities of observing z
given belief state b, and whether qj is in state 1 or state
0. Then, it follows that

∂j(h∗i (b, P )− hi(b, P )) =
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−
∑

z

(p∗(z/b, qj = 1)− p∗(z/b, qj = 0))p∗(q̂i = 1/z, b),

where recall that the variable p∗(q̂i = 1/z, b) = c∗i (b, z)
is the “true” probability that the observation of the ith

map component is 1 given the belief state b and the
observation z (see Section 2.2). Hence, it follows that

∂i(h∗i (b, P )− hi(b, P )) =

−
∑

z

[p∗(z/b, qi = 1)− p∗(z/b, qi = 0)]p∗(q̂i = 1/z, b),

= −[p∗(q̂i = 1/qi = 1, b)− p∗(q̂i = 1/qi = 0, b)]

Hence, ∂i(h∗i (b, P ) − hi(b, P )) < −ε if p∗(q̂i = 1/qi =
1, b) − p∗(q̂i = 1/qi = 0, b) > ε. The above equation
thus implies that the probability of observing the map
component occupied when it is actually occupied should
be more than the probability of seeing it occupied when
it is actually unoccupied (i.e., a spurious observation
due to some other map component). This in turn is a
“good sensor” assumption, i.e, we see the right observa-
tion more times than the wrong one. This corresponds
to the heuristic that we neglect or disregard the obser-
vations of the map components that are too far from our
current belief state. Thus, the set Bi in Eq. 44 above
should consist of only those belief states from which the
observation of map component i can be reliable. Ensur-
ing that the set Bi is chosen in the above fashion implies
that ∂i(h∗i (b, P ) − hi(b, P )) < −ε for all b ∈ Bi, and
hence, it follows that Eq. (42) is automatically satisfied.
Recall the definitions of hi(b, P ) and h∗i (b, P ) (cf. Eqs.
(33)-(34)). The difference between the two signifies the
average observation prediction error of the ith map com-
ponent given that the map probability estimates are P .
Recall that it is zero for P = P ∗. Thus, ∂j(h∗i (b, P ) −
hi(b, P )) represents the sensitivity of this error to the jth

component of the map probabilities. Now, if we require
that

|
∑
j 6=i

[∂j(h∗i (b, P )− hi(b, P ))]| ≤ |∂i(h∗i (b, P )− hi(b, P ))|,

for all b ∈ Bi, then Eq. (43 in assumption 2 is auto-
matically satisfied. The equation above implies that the
sensitivity of the observation error of the ith map com-
ponent to its own map probabilities should dominate
the cumulative sensitivity of the error to all other map
components. This is a structural assumption that is
required regardless of whether the robot pose is uncer-
tain or perfectly known. In fact, it may be reasonably
expected that it is satisfied if the map components are
updated only from “good” belief states, i.e., belief states
from which the sensors can be assumed to be reliable.
Experimental evidence seems to suggest the same as
well. The development above can then be summarized
in the following proposition.

Proposition 3 Given any map component qi let there
exist a set of belief states Gi s.t. for all beliefs b ∈ Gi, the
following hold:

p∗(q̂i = 1/qi = 1, b)− p∗(q̂i = 1/qi = 0, b) > ε,

|∂i(h∗i (b, P )− hi(b, P ))| ≥ |
∑
j 6=i

∂j(h∗i (b, P )− hi(b, P ))|,

where all the partial derivatives above are evaluated at
P = P ∗. If the sets Bi are chosen such that Bi ⊆ Gi,
then assumption 2 is automatically satisfied and hence,
Proposition 2 holds.

This completes our proof of the consistency of the map-
ping algorithm given an uncertain time-varying belief
state. In practice, the sets Bi have to be chosen heuris-
tically, and some trial and error might be required be-
fore we arrive at the right choice for a particular type of
sensor. In the examples in Section IV, the sets Bi were
chosen such that we discard observations of more than
60 m for the accurate laser range finder and observations
of more than 15 m for the noisy sonar sensor.

4.1 Numerical Example

In this subsection, we provide a very simple example
that clearly illustrates the convergence of the mapping
algorithms as established above. We also show using
the same example the computation versus consistency
problem inherent in the Bayesian approach.

Consider the situation shown in Fig. 1. We assume that
the robot can be at one of the two locations s1 and s2

with probabilities b1 and b2. We have a perfect range
sensor. There are two grids: q1 and q2, q1 is empty and
q2 is occupied. Thus, there are only two possible obser-
vations: z1, that made from s1 and z2, that made from
s2, as shown in the figure. Since, we do not know ex-
actly where the robot is located, we might sometimes
think that we have a reading fom q3, which is actually
occluded. Note that we either have no information about
q3 or think its occupied, its never seen empty.
First, we show the consistency of the frequentist ap-
proach. Let the current estimates of the map occupancy
probabilities for q1, q2 and q3 be p1, p2 and p3 respec-
tively (probability that the map components are occu-
pied). Consider the probability of observing qi occupied
given the above estimates, the reading z and the belief
state b, ci(b, z, P ) as defined previously (cf. Eq. 20):

ci(b, z, P ) =
∑

s=s1,s2

1(q̂i = O/z, s)
p(z/s)b(s)

p(z/b)
, i = 1, 2, 3.

(47)

We see that p(z1/s1) = p(z1/q1 = E, q2 = O, s1)p(q1 =
E)p(q2 = O) = (1 − p1)p2. Similarly, p(z1/s2) = (1 −
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Fig. 2. Convergence of Map Probabilities

p1)(1−p2)p3, p(z2/s1) = p1, p(z2/s2) = (1−p1)p2, and
hence, p(z1/b) = (1−p1)p2b1 +(1−p1)(1−p2)p3b2, and
p(z2/b) = p1b1 + (1 − p1)p2b2. Substituting the above
into the expression for ci(b, z, P ) leads us to the follow-
ing: c1(b, z1, P ) = 0, c1(b, z2, P ) = b1p1

p(z2/b) , c2(b, z1, P ) =
(1−p1)p2b1

p(z1/b) , c2(b, z2, P ) = 1. Since, we have a perfect sen-
sor, the observation matrices are identity, and thus, the
update equation simply becomes:

pi,t = (1− γt)pi,t−1 + γtci(b, zt, Pt−1), (48)

where γt = 1
at . The sanity check that needs to be per-

formed on the above algorithm is that the true map
probabilities p1 = 0, p2 = 1 are fixed points of the
above algorithm. We show this for p2, the case of p1

is trivial. Given p1 = 0, p2 = 1, and z1 is observed,
p2 will be updated by the algorithm to c2(b, z1, P ) =
(1−p1)p2b1

p(z1/b) = 1.1.b1
b1+1.0.p3.b2

= 1. The update of p2 for z2 is
always 1. Hence, indeed the true map probabilitites are
fixed points of the algorithm.
Of course, this does not mean that the algorithm con-
verges to the true map probabilities given arbitrary ini-
tial conditions on p1, p2 and p3. In Fig. 2, we show sim-
ulations of the progress of the mapping algorithm for
various initial conditions of p1 and p2, and for b1 = 0.4
and b2 = 0.6 (the behaviour is similar for other choices
of b1 and b2). The plots show the trajectories of the al-
gorithm in the p1 − p2 plane for various different initial
conditions. It is seen from the figure that the algorithm
does indeed converge to the true map probabilities for
all initial conditions.

Now, we show that the Bayesian approach fails unless
the correlation between the components q1, q2 and the
robot pose s is maintained. Consider first the case when
we do not consider correlations of any map component
to any other map component as well as the robotic pose.
In such an approach, the update of the map component

would be

p(qi = O/F t) = ηp(zt/b, qi = O)p(qi = O/F t−1). (49)

The sanity check has to be that the true map proba-
bilities is a fixed point of the above update equation.
Consider the update of p(q2 = O) given p1 = 0, p2 = 1.
If observation z1 turns up, the update of p(q2 = O) is
p(q2 = O) = p(z1/b,q2=O)p(q2=O)

p(z1/b,q2=E)p(q2=E)+p(z1/b,q2=O)p(q2=O) =
(1−p1)p2b1

(1−p1)p2b1+p3b2
= b1

b1+p3b2
6= 1, since p3 cannot be equal

to 0 for its either occluded or mistakenly thought to be
occupied. Hence, the true map probabilities are not a
fixed point of the above update equation, and hence, the
update is not consistent.
Next, we show the case where we maintain the correla-
tions between the map component and the robot pose
but not with other map components. In this case, the
joint distribution is

p(s, q1, q2) = b(s)p(q1/s)p(q2/s). (50)

Thus

p(qi) =
∑

s

b(s)p(qi/s). (51)

The update equation for p(qi/s) is then given by:

p(qi/s,F t) = ηp(z/s, qi)p(qi/s,F t−1). (52)

Let p(q2/s1) = p21, p(q2/s2) = p22. Again, we as-
sume the true map probabilities, p1 = 0, p2 =
1, and show that they are not a fixed point of
the above iteration. Given z1, p(q2 = O/s1) =

p(z1/s1,q2=O)p(q2=O/s1)
p(z1/s1,q2=E)p(q2=E/s1)+p(z1/s1,q2=O)p(q2=O/s1)

= (1−p1)p21
(1−p1)p21+0 =

1, and similarly given z1, p(q2 = O/s2) = ηp(z1/s2, q2 =
O)p(q2 = O/s2) = 0. Then, p(q2) = p21b1 + p22b2 =
b1 6= 1. Hence, even in this case, the true map probabil-
ities are not the fixed point of the Bayesian update and
hence, not consistent.

Now, suppose that we maintain the correlations between
the pose s and the components q1, q2. The recursive up-
date law is as follows:

p(s, q1, q2/F t) = ηp(zt/s, q1, q2)p(s, q1, q2/F t−1). (53)

Now, we may verify that the true map components p1 =
0, p2 = 1 are indeed a fixed point of the above recursion.
In order to show this, note that given the observation z1

and the true map components, p(z1/s, q1, q2) = 0 for all
possible combinations of (s, q1, q2) except s = s1, q1 =
E, q2 = O. Hence, it follows that given the true map
probabilities and the observation z1, the map probabili-
ties are updated to p(s1, q1 = E, q2 = O) = 1 and hence
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the true map probabilities p1 = 0, p2 = 1 do not change
and thus, are fixed points of the above iteration. Simi-
larly, it can be shown that given z2, the true map prob-
abilities do not change. Thus, we see that the only way
that a consistent estimate of the map can be formed in
the Bayesian approach, is by considering the joint distri-
bution p(s, q1, q2), i.e., the map components have to be
correlated to each other as well as the robot pose. Note
that the above does not prove that the method is con-
sistent just that the true map probabilities are indeed
fixed points of the recursion, which is more than can be
said of the Bayesian recursions if the correlations are not
considered.

5 Application: Simultaneous Localization and
Mapping (SLAM)

In this section, we apply the frequentist mapping
methodology to the simultaneous localization and map-
ping (SLAM) problem. The SLAM problem consists of
a robot localizing itself within an unknown map while
simultaneously trying to estimate the map. Typically
a purely Bayesian approach is taken to the problem
which leads to computation vs. consistency problem as
mentioned in the introduction [11,12]. We adopt a “first
localize -then map” philosophy to the problem which
leads to a hybrid solution technique that avoids many
of the pitfalls of the Bayseian approach.

We assume that the system localizes itself with respect
to a sparse set of features/ landmarks Θ = {θ1, · · · , θK}
. Then, the belief (or probability distribution) over the
pose-features pair is formed recursively using a Bayes
filter (such as a Kalman filter in the Linear Gaussian
case):

bt(s,Θ) = p(zθ
t /Θ, s)

∑
s′

p(s/s′, ut−1)bt−1(s′,Θ), (54)

where zθ
t represents the noise corrupted observation of

the landmarks Θ at time t, and ut−1 denotes the control
acting on the system at time t − 1. The identification
and recognition of these features and landmarks in an
autonomous fashion is a challenging problem in itself,
but can be solved using suitable feature-based SLAM al-
gorithms [14, 15, 32]. Given the joint distribution of the
pose-landmark pair, the belief on the pose of the vehicle
is formed by marginalizing the dependence on the land-
marks, and is output to the frequentist part of the map-
ping algorithm. The frequentist part of the method, i.e.,
Estimator E2, is now used to map the rest of the (dense)
environment using the belief output from the Bayesian
part of the methodology. Thus, the hybrid methodology
can be represented as the following algorithm:

Suppose that there are M + N total components in
a map. At the basic algorithmic level, in the Kalman

Hybrid SLAM
Input b0(s), initial map occupancy probabilities Pi(0),
and reading of environment z1, t = 0.
Do till convergence of map probabilities

Bayesian: Extract the readings of the landmarks, zθ
t ,

from the raw sensor readings zt, and form the belief on
the state of the robot using Eq. (54) and marginalizing
over the landmarks.
Frequentist: Take the rest of the data zQ

t and update
the occupancy probabilities of those components of the
(dense) map Q that are observed given zQ

t (cf. Eq. 20),
using the frequentist estimator E2 (cf Eq. 26).

end

filter based approach, the computational complexity
is O(N + M)2 in order to retain consistency. In the
Hybrid formulation, suppose that N is the number
of features that is used to localize the robot and M
is the rest of the map. Then, at the basic algorithm
level, the computational complexity of the hybrid ap-
proach is O(N2) + O(M) if a Kalman filter is used to
localize the robot with respect to the features. Thus,
if N << M , then the hybrid formulation possesses
orders of magnitude better computational benefits com-
pared to Bayesian methods such as the Kalman filter,
while being provably consistent. Moreover, due to the
sparseness of the landmark/ features, the data associa-
tion problem for the Bayesian sub-problem (i.e., which
observation is from which landmark) is significantly
simpler. In conjunction with the immunity of the fre-
quentist estimator to the data association problem, this
leads to significantly improved robustness of the hybrid
formulation to the data association problem.

5.1 Experiments

In this section the hybrid methodology is applied to
large maps with multiple cycles in them.. We have cho-
sen to test our methods on such maps because of the
well-known difficulties such maps pose to SLAM algo-
rithms. The mobile robot is a differential drive vehicle.
The equations of motion of such a robot is given by the
following [33]:

ẋ =
R

2
(ul + ur)cosθ, (55)

ẏ =
R

2
(ul + ur)sinθ, (56)

θ̇ =
R

L
(ur − ul), (57)

where (x, y, θ) specify the pose of the robot,(ul, ur) are
the left and right wheel angular velocities, and (R,L)
are the radius of the wheel, and width of the robot re-
spectively. The dimensions of the robot were as follows:
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a wheel radius of 25 cm, and a width of 50 cm. The mea-
surements equations for the features are:

r(k) =
√

(x− x(k))2 + (y − y(k))2, φ(k) = tan−1 (y − y(k))
(x− x(k))

,(58)

where (x(k), y(k)) denotes the location of the kth feature
and (r(k), φ(k)) represents the range and bearing to the
kth feature, relative to the sensor location. Experiments
are performed for two different kinds of sensors: a) a
noisy sensor with both range and bearing errors (sonar)
with σr = 0.2 m and σθ = 0.6 deg, and b) an accurate
range sensor such as a SICK (brand) laser range sensor
with σr = 0.01 m and σθ = 0.05 deg. The maximum
range of the sensors was assumed to be 40 m. We as-
sumed that there were feature points in the map that
could be identified from the raw sensory data using suit-
able signal processing techniques. Mostly, these feature
points were assumed to be either corners, or mid-points
of corridors/ straight line segments. However, in our
simulations, we do not identify these feature points from
the raw sensory data as our intent is to show the efficacy
of our methodology, and not the autonomous identifica-
tion of such feature points. Any suitable feature-based
SLAM algorithm can be used to achieve this goal. The
observation of the feature-points are used in an Ex-
tended Kalman Filter (EKF) to form the belief on the
robot pose, i.e., solve the Bayesian sub-problem of the
hybrid formulation. Next, the belief state is used to map
the rest of the dense map using the frequentist estima-
tor E2. The process noise in the wheel encoders is σu =
0.5 rad/s. The average robot wheel speed is 5 rad/sec
and the integration time step for the EKF is 0.5 sec.

In the following, we show how the observation models
A(s) that are to required in the frequentist estimators
E1/ E2 are extracted from the sensor noise models. We
show the case of a range sensor corrupted by Gaussian
noise. The method can be extended to sensors with both
range and bearing errors in a relatively straightforward
fashion.

Suppose the robot is at some point A and the observation
is made along the ray AP (see Fig. 3). The senor gives
a range reading along the ray AP , and is assumed to be
corrupted with zero mean Gaussian noise. Let qk be some
grid on AP . We want to evaluate the probabilities p(q̂k =
O/q̂k = O) and p(q̂k = O/q̂k = E), given that the
observation is made along ray AP . Note that AP denotes
the pose of the robot since it encodes the location of the
sensor as well as the orientation of the sensor. Let the
grids between A and qk be denoted by ql1, ql2, · · · qln and
the grids beyond qk as qh1, · · · qhm. We can calculate the
required probabilities using the following formulas which
are a direct consequence of the law of total probability,
and the assumption of the mutual independence of the

A

qk

qln

ql1

qh1

qhm

Probability that an observation falls in grid qk
depends on the occupancy of the grids in front
as well as those in the back of qk, along with 
the sensor noise characteristics.

P

Fig. 3. Observation Model for a Range Sensor

different map components :

P (q̂k=O/qk=O)=P (q̂k=O/ql1=O)P (ql1=O)

+P (q̂k=O/ql1=E,ql2=O)P (ql2=O)P (ql1=E) + ...

+P (q̂k=O/ql1=E,...,ql(n−1)=E,qln=O)P (qln=O)

n−1∏
i=1

P (qli=E)

+P (q̂k=O/ql1=E,...,qln=E,Ck=O)
n∏

i=1

P (qli=E)

(59)

P (q̂k=O/qk=E)=P (q̂k=O/ql1=O)P (ql1=O)

+ P (q̂k=O/ql1=E,ql2=O)P (ql2=O)P (ql1=E)+ ...

+ P (q̂k=O/ql1=E,...,ql(n−1)=E,qln=O)P (qln=O)

n−1∏
i=1

P (qli=E)

+ P (q̂k=O/ql1=E,...,qln=E,qh1=O)P (qh1=O)
n∏

i=1

P (qli=E)

+ P (q̂k=O/ql1=E,...,qln=E,q̂k=E,qh1=E,qh2=O)

P (qh2=O)P (qh1=E)
n∏

i=1

P (qli=E) + ...

+ P (q̂k=O/ql1=E,...,qln=E,q̂k=E,qh1=E,...,qhm=O)
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(a) Original map (b) Raw odometry map

(c) Final map after one round (d) Final map after two rounds

(e) Residual error plot (f) x error and 3σ envelop

(g) y error and 3σ envelop (h) φ error and 3σ envelop

Fig. 4. Experimental results for Map 1 with accurate sensor
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(a) Original map (b) Raw odometry map

(c) Final map after one round (d) Final map after two rounds

(e) Residual error plot (f) x error and 3σ envelop

(g) y error and 3σ envelop (h) φ error and 3σ envelop

Fig. 5. Experimental results for Map 1 with noisy sensor
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(a) Original map (b) Raw odometry map

(c) Final map after one round (d) Final map after two rounds

(e) Residual error plot (f) x error and 3σ envelop

(g) y error and 3σ envelop (h) φ error and 3σ envelop

Fig. 6. Experimental results for Map 2 with accurate sensor
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(a) Original map (b) Raw odometry map

(c) Final map after one round (d) Final map after two rounds

(e) Residual error plot (f) x error and 3σ envelop

(g) y error and 3σ envelop (h) φ error and 3σ envelop

Fig. 7. Experimental results for Map 2 with noisy sensor
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P (qhm=O)

m−1∏
i=1

P (qhj=E)

n∏
i=1

P (qli=E)

(60)

Note that the quantities P (q̂k = O/ql1 = O), P (q̂k =
O/ql1 = E, ql2 = O) etc. denote the probability that
the observation falls in a particular grid given that the
obstacle was in some other grid. These probabilities can
be easily calculated using the noise model of the sensor.
The observation matrix Ak for a grid qk is then given by:

Ak =

(
P (q̂k = O/qk = O) P (q̂k = O/qk = E)

P (q̂k = E/qk = O) P (q̂k = E/qk = E)

)

P (q̂k = E/qk = O) = 1 − P (q̂k = O/qk = O) and
P (q̂k = E/qk = E) = 1 − P (q̂k = E/qk = E). Note
here that the observation matrix is dependent on the
real probabilities of the map components P (qK = O)
and P (qk = E).

Figs 4-7 show the results of our simulation experiments.
Two different maps are considered in these experiments.
The first map (Map 1) consists of a large cyclic corridor
of side 100m while Map 2 is a long hallway (100m x
40m) with 4 cyclic corridors. A total of 2 laps of each
map is made. The total length of the runs was approxi-
mately 1 km for Maps 1 and 2. Each of these maps are
sensed using both the noisy sensor, as well as the accu-
rate Laser range sensor. Figs 4-5 represent the results
for Map 1 while Figs 6-7 represent the results for Map
2. In each of these figures, Subfigure (a) shows the orig-
inal map along with the actual as well as the estimated
robot trajectory, Subfigure (b) shows the raw odome-
try data, Subfigures (c) and (d) shows the estimated
map, along with the features and their estimates, after
the completion of one and two rounds respectively. In
Subfigure (e), we show the total error in the map as
a function of the number of rounds the robot makes
and is defined as the sum of the absolute values of the
component wise error between the estimated map and
the true map divided by the total number of grids. This
may be interpreted as the fraction of the map that is
unconverged. Subfigures (f)-(h) show the error in the
estimates of the x, y, and θ co-ordinates of the robot
along with their associated 3σ uncertainty bounds. The
features used in these maps were the corners of the cor-
ridors and were assumed to be reliably identified.

These figures give us an idea as to how well the algo-
rithm is performing and also give us valuable practical
insight into the algorithm. The reason we chose these
examples is because of the well-known challenge maps
with multiple cycles pose to SLAM algorithms which
is evidenced from the raw odometry plots (Subfigure
(b) in the plots). These raw data plots show that pure

odometry is not enough for accomplishing the mapping
and localization tasks. The results show that the algo-
rithm is able to map a large area with multiple cycles
without much of a problem even though the sensors are
noisy. Qualitatively (Subfigures (c), (d) in the plots), in
that the edges of the maps are much sharper, as well as
quantitatively (Subfigure (e) in the plots), in that the er-
ror is approximately in the range 0.10-0.25 for the noisy
sensor while it is less than 0.05 for the accurate sensor,
the results improve with the more accurate Laser range
sensor when compared to the noisy sensor. Thus, this
reinforces the intuitive idea that much larger maps can
be mapped with an accurate sensor such as the Laser
range sensor when compared to a noisier sensor such as
sonar. From Subfigure (e), it should be clear that the
estimate of the map practically converges within one
round. This is the case since the number of observations
of any component that is in the robot’s field of view
is high enough during the first round. It can also be
seen from the total map error plots (Subfigure (e)) that
the mapping algorithm seems to converge exponentially
fast. A rigorous proof of this observation is beyond the
scope of this paper and is left for future work. The algo-
rithm had no problems in closing large loops as the ones
shown here and we did not have to make any heuristic
corrections when such a loop was closed. In fact, the size
of the map, or the number of cycles in it, is really never
a problem for this method as long as the EKF remains
consistent. In subfigures (f)-(h), the true errors in the
estimates of the pose of the robot remains within the 3σ
uncertainty bounds and show that the EKF used for the
Bayesian sub-problem does indeed remain consistent.
This is not a rigorous test of the consistency of an EKF
but is routinely used in the filtering community as a test
for the consistency of a filter. The hybrid algorithm has
also been tested on several other maps with satisfactory
results which we cannot show here due to the paucity
of space. We note here that in Fig. 7, Subfig. (g), the
error in the estimates in the y direction is very close to
the 3σ boundary and thus, the EKF starts to become
inconsistent. This results in the entire hybrid algorithm
becoming inconsistent and is evidenced in the relatively
high error (≈ 0.25) in the figure when compared to the
other maps (< 0.1). Thus, maintaining the consistency
of the Bayesian filter is key to the overall performance
of the hybrid scheme.

Thus, we may conclude the following from the experi-
ments above: 1) the theoretical results presented in the
first part of this paper are borne out by the experiments,
2) larger maps can be estimated using more accurate sen-
sors, 3) the estimator is seen to converge exponentially
fast to the true map probabilties, and 4) the method re-
sults in consistent maps as long as the Bayesian estima-
tor used in the hybrid scheme (in this case, the EKF)
remains consistent. Presumably, the consistency of the
Bayesian estimator can be maintained in larger maps if
advanced nonlinear filtering techniques such as the un-
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scented Kalman filter (UKF), mixture of Gaussian filters
and nonlinear filters based on solution of the Fokker-
Planck equation.

6 Conclusion

We have proposed a frequentist approach to mapping
with mobile sensors under uncertainty and applied the
methodology to the SLAM problem of Robotics. We
have proved the consistency of the algorithm and shown
that it is robust to the data association problem while
having complexity linear in the map components. The
hybrid SLAM methodology was tested on several large
maps and the experimental results confirm the applica-
bility of the mapping methodology. In future research,
we shall test the algorithms on larger and more com-
plicated maps than the ones presented in the paper, as
well as experimentally evaluate it using real data. We
shall extend the methodology to maps with dynamic ele-
ments and the distributed multiple robot mapping prob-
lem. We shall also consider the problem of estimating
dynamic spatially correlated maps.
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