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Abstract— In this paper, an Adaptive Sampling strategy is
presented for the generalized sampling based motion planner,
Generalized Probabilistic Roadmap (GPRM) [18, 19]. These
planners are designed to account for stochastic map and model
uncertainty and provide a feedback solution to the motion
planning problem. Sampling intelligently, in this framework,
can result in huge speedups when compared to naive uniform
sampling. By using the information of transition probabilities,
encoded in these generalized planners, the proposed strategy
biases sampling to improve the efficiency of sampling, and
increase the overall success probability of GPRM. The strategy
was used to solve the motion planning problem of a fully
actuated point robot on several maps of varying difficulty
levels, and results show that the strategy helps solve the
problem efficiently while simultaneously increasing the success
probability of the solution. Results also show that these rewards
increase with an increase in map complexity.

I. INTRODUCTION

The general motion planning problem in robotics is to find
a collision free path for a robot from one configuration to
another, in a given obstacle space.
Exact planners are intractable for most practical problems
because the complexity grows exponentially with the dimen-
sionality of the problem [1]. Randomized Sampling based
methods were introduced to provide approximate solutions,
while avoiding the prohibitive cost of computing the exact
representation of the free space. Probabilistic Roadmaps
(PRM) are one of the most successful sampling based meth-
ods, which sample the domain in a random fashion and build
a roadmap over these samples to represent the free space [9].
To address highly constrained motions and domains, a key
idea is to bias the sampling towards good regions of the con-
figuration space, and various different sampling strategies to
do the same have been proposed. These planners make local
hypothesis that identify poor visibility regions [13] in the
free space. Some use the information of workspace geometry,
broadly categorized as Workspace based sampling strategies.
Techniques in this category are watershed labeling algorithm
[2], workspace importance sampling [3], and medial axis
sampling [4, 5]. Some use geometric patterns and reject
unpromising samples, categorized as Filtering based sam-
pling strategies. Techniques under this category are Gaus-
sian strategy [6], bridge test [7], and Vis-PRM [8]. Some
use information gained during the roadmap construction,
categorized as Adaptive Sampling Strategies and techniques
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include two-phase connectivity expansion strategies [9], and
multiphase sampling [10]. There also exists a Deformation
Strategy for Sampling, which tries to deform the domain into
a more expansive domain [11]. These strategies spend more
time generating a node when compared to a naive uniform
sampling, with the expectation that a much smaller roadmap
is required to answer queries, resulting in faster computation
time. These strategies were studied and analyzed in refs.
[12, 13, 14, 15] where various measures/ metrics such as
connectivity, coverage and completeness were proposed to
evaluate their effectiveness. In ref. [16], an attempt is made
to provide metrics for sampling process during the roadmap
construction. Thus, sampling intelligently can achieve huge
speedup when compared to naive uniform sampling.
Unfortunately PRM and its variants work in the deterministic
framework, and with the introduction of map and robot
model uncertainty into the problem, the technique is no
longer applicable. Furthermore, PRM does not account for
the dynamics of the robot. Rapidly-exploring random trees
(RRTs) incorporate randomized sampling of the domain,
as in PRM, while also incorporating the dynamics of the
robot while planning [17]. However, RRTs are open loop
planners, as are PRMs, and thus cannot handle map and
model uncertainty. The generalized sampling based motion
planners, Generalized-PRM (GPRM) and Generalized-RRT
(GRRT), were introduced to incorporate stochastic models
of map and model uncertainty along with the dynamical
constraints of the robot, and provide a feedback solution to
the motion planning problem [18], [19]. We would like to
mention other attempts to generalize PRMs and RRTs to
handle map uncertainty [20, 21, 22, 23]. However, none of
these techniques provide a feedback solution to the planning
problem and are brittle under model uncertainty.
In this paper we introduce a novel strategy for adaptive
sampling in GPRM. The strategy proposed here incorporates
the information of the probabilities carried by the connec-
tions in GPRM. With this extra information, which is unique
to planners dealing with uncertainty, the sampling strategy
biases the samples such that the efficiency and the overall
success probability for the planning increases in GPRM. We
show that motion planning problem on complex maps can
be efficiently solved using GPRM, in conjunction with the
adaptive sampling strategy, while simultaneously increasing
the success probability of the solution.
The rest of the paper is organized as follows. Section II
discusses the Hierarchical methods and the methodology
of the GPRM algorithm in brief, section III introduces
conceptualization, development and the algorithm of the
Adaptive Sampling Strategy for GPRM. Section IV discusses



the application of GPRM along with Adaptive Sampling on
a dynamical system along with results.

II. GENERALIZED SAMPLING BASED METHODS

The basic motion planning problem is to find a collision
free path for a robot in a given obstacle space. With the
introduction of map and model uncertainty, one can no longer
have the same formulation of the motion planning problem.
In the presence of stochastic model uncertainty, there is a
need for feedback control, which is then associated with a
probability that the robot reaches the goal without hitting the
obstacles. Generalized Sampling Based Algorithms [18, 19]
were introduced to address the problem of feedback motion
planning in such constrained work spaces. Before going into
the details of the methodology of [18, 19], we note that the
complexity of the motion planning problem has increased
due to:
• Introduction of model uncertainty in the dynamics of the

robot, which implies that we have to obtain satisfactory
performance over an ensemble of paths instead of a
single path.

• Introduction of map uncertainty, implies the planner has
to succeed for an ensemble of maps.

The notion of collision avoidance and collision-free paths as
the solution to the motion planning problem, can no longer be
satisfied, and therefore the above criteria need to be replaced
by a solution/ path with a high probability of success. The
motion planning problem can be re-framed as : To solve the
motion planning problem in the presence of map uncertainty
and model uncertainty, generate a feedback solution with a
probability of success above an a-priori specified probability,
pmin.

A. Hierarchical Methods and Generalized Probabilistic
Roadmaps (GPRM)

If the uncertainties in the robot model and environment
can be modeled probabilistically, the robot motion planning
problem can be formulated as Markov Decision Problem
(MDP) [24]. These MDPs are computationally intractable for
anything but small state/ control spaces and especially hard
to solve in continuous state and control spaces. Hierarchical
Methods can be used to break down the complexity of the
problem. The Generalized Probabilistic Roadmaps(GPRM)
[18, 19], is a sampling based hierarchical method which
extends the Probabilistic Roadmaps (PRM) [9] technique
for deterministic path planning, to systems with stochastic
model and map uncertainty.
In the following paragraph we briefly introduce
GPRM, more details can be found in [18],
[http://dnc.tamu.edu/wiki/images/4/44/Paperj GPRM.pdf].
The state of the robot is given by x = (q, q̇), where q
represents configuration of the robot and q̇ the generalized
velocities. The free region in the map corresponds to a free
region in the configuration space, Cfree, which induces a
free region in the state-space of the robot, say χfree. GPRM
samples equilibrium states (i.e. state wherein the velocities
are zero) in χfree, which are called landmarks.

The planning problem of guiding the robot from the
start landmark to the goal landmark is divided into two
hierarchical levels. The lower level planner guides the robot
from one landmark to another using feedback control and
accounts for the model uncertainty in the robot dynamics,
specified by the following equation:

ẋ = f(x) + g(x)u+ h(x)w (1)

where x is the state of the robot, w is a white noise
perturbation, and u is the control. However, the control does
not account for constraints, i.e. obstacles in the map, which
are specified by p(O/y), the probability that a point y in
map is occupied. The interaction between feedback planner
and the obstacles in the map result in a transition probability
and transition cost for the robot from one landmark to next.
Figure 1 depicts a sample path between the landmarks s and
r given a feedback controller u that guides it towards r.
The control u at state s, denotes the next landmark among
the k-nearest neighbors of s that the robot is guided to. The
transition probability, of the path, ps,r is given by :

ps,r =
∏
y

(1− p(O/y)) (2)

where y represents the grids along the path. A failure state,
say xfail, is introduced and 1 − ps,r is the probability of
landing in the failure state. The transition cost, cs,r is directly
proportional to the probability of transitioning to the failure
state, xfail. Due to the presence of model uncertainty, the
average cost c(s, u) and transition probability p(r/s, u) have
to be formed by averaging over all such sample paths. This
is achieved using Monte Carlo simulations.

Fig. 1. Transition cost and transition probability

The top level planner, works on global map in the landmark
space. It uses the information of the metrics of the lower level
planner, minimizes the cost-to-go from each landmarks over
all possible policies, and gives the optimal control policy
over the landmark map.
The optimal control action u∗(·) for each state/ landmark of
the map is the outcome of the top level planner. The optimal
cost-to-go J∗(·), required in calculation of u∗(·), is found as
the solution of the Bellman fixed point equation/ Dynamic
Programming equation :

J∗(s) = min
u
{c(s, u) +

∑
r

(p(r/s, u)J∗(r)} (3)

u∗(s) = argmin
u
{c(s, u) +

∑
r

p(r/s, u)J∗(r)} (4)



where J∗(s) is the optimal cost-to-go from state s, u∗(s)
is the optimal control action to be taken at state s. Here,
control u at state s is the next landmark among the k-nearest
neighbors of s that the robot is guided to, p(r/s, u) is the
probability of transition from s → r given the robot is
guided towards the landmark specified by u, and c(s, u) is
the cost of transition. Note that p(r/s, u) and c(s, u) are got
by evaluating the lower level feedback planner. The details
of the algorithm and the calculation of metrics are in [18, 19].

B. Algorithm GPRM

The pseudo-code for the generalized probabilistic
roadmaps (GPRM) algorithm is shown below:

Algorithm GPRM

• Given : x0, the starting point, xg , the goal point of the
robot, and pmin, the minimum probability of success

• Initialize GPRM with the nodes x0 and xg

1) Sample the equilibrium states in χfree probabilis-
tically using a uniform distribution

2) Build the connectivity graph, i.e. connect every
sampled state in the domain with its k-nearest
neighbors using suitable obstacle-free feedback
controllers

3) Evaluate the cost and transition probability as-
sociated with every connection in the resulting
connectivity graph using Monte Carlo Simulations

4) Plan on the resulting SMDP using evaluated edge
cost and transition probability from step 3

5) Evaluate the probability of success, ps, of the
resulting path from step 4. If ps > pmin, end;
else go to step 1

• End

A few points have to be made regarding the feedback
controllers specified in step 2 above :
• Due to model uncertainty present in the dynamical

system, it is impossible to control the robot exactly to
the point xg even in the absence of obstacles

• In the case of stochastic systems, a feedback controller
is necessary due to uncertainty. The feedback controller
ensures that even in presence of uncertainty in the
model, the robot reaches a neighborhood of the target
equilibrium state with a high probability, in the absence
of obstacles

• The feedback controller is designed for a workspace
without any obstacles as otherwise the controller design
is complicated

The feedback controller can be designed in many ways.
For linear systems LQR based controllers can be used. For
non-linear system, the system can be linearized about an
equilibrium point and a feedback controller can be designed
for the linearized system. Other non-linear feedback
controllers may also be used, such as the dynamic feedback
controller used for the non-holonomic system in [19]. The
feedback controller operates between one landmark and

another and in presence of model uncertainty ensures the
robot reaches a neighborhood of the target equilibrium state
in the absence of obstacles. In the presence of obstacles,
Monte Carlo simulations are used to compute the transition
probability and transition cost in using the feedback planner
to guide the robot from one landmark to another. The
feedback controller used in the work presented here is
state-feedback based LQR controller.

The GPRM is capable of handling model and map
uncertainty as discussed above, but as the complexity of
the map, i.e the size of the map and the clutter of the
obstacles increase, the number of landmarks required to
find a solution becomes large, thereby greatly increasing the
computational resources required. A logical extension for
complicated maps is to sample in areas where samples are
required, i.e. use an adaptive sampling strategy. The next
section describes such an adaptive sampling algorithm.

III. ADAPTIVE SAMPLING

In sampling based motion planning algorithms, the number
of samples determine the complexity of computation required
to solve the problem. For a complex domain, a naive uni-
form sampling will require a large number of samples and
hence, more computational resources. Introduction of adap-
tive sampling adds intelligence to the planning algorithm, by
efficiently adding new samples.

A. Adaptive Sampling Details

In a sampling based motion planners framework, co-
ordinates of configuration space are sampled in random
fashion which is mapped into the obstacle space as shown
in Figure 2(a) (they are referred to as equilibrium states, xg

or landmarks in GPRM framework). A connectivity graph
is constructed over the landmarks as shown in Figure 2(b),
it is based on the cost and transition probabilities computed
from the lower level feedback planner used in GPRM.
Using the information encoded in the connectivity graph,
we introduce the major ingredients of the adaptive sampling
strategy in the following.

1) Identification of Start and Goal Clouds: A cloud of
samples is referred to as a collection of landmarks which
are inter-connected with transition probabilities higher than
pmin, in the connectivity graph of the map/ obstacle space.
The start and the goal clouds are the cloud of samples con-
taining the start and the goal (or end) landmarks respectively.
The motion planning problem, in the generalized sampling
based motion planning framework, is to find a path1 with
success probability higher than pmin between the start and
the goal landmark. The idea is to identify the cloud of sam-
ples as shown in Figure 2(c) containing the start landmark
state and the goal landmark state and try to connect them
during the re-sampling phase and hence solve the motion
planning problem.

1A path here implies a local feedback controller guides the robot from
one landmark to another, while the higher level planner guides the robot
regarding the landmark, to go to next.



(a) Landmarks (b) Connections

(c) Cloud of samples

Fig. 2. Problem Domain with free space, obstacles, start, goal positions

To identify these clouds the information carried by the
connectivity graph is used. The connectivity graphs in the
generalized motion planner framework encode both the tran-
sition cost and the transition probability information.
We assign goal proximity probability, p̄g(x), and start prox-
imity probability, p̄s(x), to each of the landmarks, x. Prox-
imity probability is a metric defined between two landmark
states (say xa and xb), and it carries the information of the
probability of transition from state xa to xb, given by p̄b(xa),
and vice-versa, p̄a(xb). The goal proximity probability, p̄g(x)
is defined as the proximity probability between a landmark,
x, and the goal landmark state, xg , along with a constraint
that p̄g(x) > pmin, where pmin is given. It is calculated
by traversing from the goal landmark, xg to the concerned
landmark, x, keeping track of all the transition probability in
the path. Similarly, the start proximity probability p̄s(x) is
calculated by traversing from the start landmark, xs, to the
concerned landmark, x, and keeping track of the transition
probabilities along the way. These metrics, once calculated,
will suggest landmarks which are connected to the goal
and the start landmarks, with a overall transition probability
greater than the threshold probability (pmin) of the domain.
In this way the cloud of samples connected to the start and
the goal with a high transition probability can be computed.

2) Identification of other clouds: We also want to identify
clouds other than the start and the goal clouds that are present
in the workspace. We compute this information to identify
and differentiate between the good and bad samples. These
good and bad samples will be discussed in item 3 below.
The process of computing the information about clouds can
be stated as:

(a) C1 (b) C2 (c) C3

(d) C4 (e) C5

Fig. 3. Categories of New landmarks sampled

• pick a landmark, x, and assign a group identification,
gid(x), representing cloud information

• all the directly and indirectly connected landmarks are
assigned the same group identification, gid(·)

• restart the process with a new landmark which has no
assigned group yet

• continue till all the landmarks are covered, i.e each
landmark has a assigned group identification, gid(·)

3) Sampling good landmarks: Sampling of landmarks
in the configuration space is usually done using uniform
sampling over the configuration space, when no knowledge
is available to bias the sampling. Sampling good landmarks
xgood involves sampling landmarks which have the potential
to solve the motion planning problem, or about rejecting the
bad landmarks xbad from a set of sampled landmarks. We
re-sample the space, i.e. generate a set of new landmarks,
Xnew, and find the k-nearest neighbors of each landmark
in Xnew. Based on the potential connections2, every new
landmark can be categorized completely, refer Figure 3, as
a landmark whose neighbors:

i) ∈ Xnew only, the set of new landmarks generated,
(refer Figure 3(a))

ii) ∈ different clouds, (refer Figure 3(b))
iii) ∈ different clouds and Xnew, (refer Figure 3(c))
iv) ∈ Xnew and a specific cloud, (refer Figure 3(d))
v) ∈ a specific cloud only, (refer Figure 3(e))

Samples in Category (iv) and (v) are categorized as “bad”
since obviously they have minimal potential to solve the
problem. Hence, using the cloud information we reject the
identified bad samples.

2The connections with k-nearest neighbors, prior to computing the
transition probabilities, which either establishes a connection or discards
it.



4) Identifying Weak Link / Links in a Low Probability
Connected Path: The connectivity graph of a map has the
transition cost and transition probability information. In
contrast, in the deterministic framework of sampling based
motion planners, such as PRM, these graphs only carry the
transition cost information. In GPRM the top level planner
searches for a high probability path over the domain, and
returns a path connecting the start landmark xs and the
goal landmark xg , and a success probability associated with
it, say ppath. There could be cases where in spite of the
connectivity, the ppath is less than the desired threshold
success probability pmin. Such an outcome can be used as
a starting point for finding a neighboring path, path′ with
a path probability ppath′ , which has a success probability
ppath′ > pmin. We identify the weak link / links3 of the low
probability path and then sample around these in search of
path′. Finding a neighboring path with a higher probability
of success in the vicinity of a low-probability path may
not always be feasible, as has been experienced during
numerical simulations, but results show that the technique
works fine most of the time.

Based on the ingredients of the Adaptive Sampling Strategy
as described above, the algorithm can be summarized as
follows :

Algorithm Adaptive Sampling GPRM

Step 1 Invoke GPRM over the given map initially with a
small number of randomly selected landmarks and
pmin

Step 2 If a path with high success probability found STOP,
else start Adaptive Sampling

Step 3 Assign start proximity p̄s(·) and goal proximity
probability p̄g(·) to all the landmarks

Step 4 Identify the landmarks connected with high proba-
bility to the start landmark and to the goal land-
mark, also identify the different clouds in the
connectivity graph, using the group identification
gid(·)

Step 5 Pick a pair of landmarks, one having high p̄g(·) and
another having high p̄s(·)

1) Sample4 between these landmarks
2) Identify bad samples xbad and reject them
3) With the remaining good samples, perform

GPRM
4) IF a path with high success probability found

STOP, ELSE IF no solution, discard the sam-
ples added, go to next pair of landmarks in
Step 5

5) ELSE IF a low probability path found
a) Find weak link / links in the low proba-

3Connections in the connectivity graph, which are responsible for low
success probability of the path.

4In simulations the samples were drawn from a Gaussian distribution,
with mean placed at the arithmetic mean of generalized positions of start
and goal landmark and the standard deviation σ being 2-norm of the distance
between start and mean.

bility path
b) Sample5 between the pair of landmark

associated with the weak link
c) Remove bad samples, and perform GPRM
d) If a path with ppath > pmin found STOP,

else GOTO Step 3

Step 6 End

The Figure 4 depicts in brief the stages in the adaptive
sampling methodology.

(a) Assign good Landmarks between
start and goal clouds, in Fig. 2(c)

(b) Assign New Connections

(c) The final path

Fig. 4. Adaptive Sampling in steps, (build-up on Fig. 2)

B. Resolution Complete

Sampling based motion planners such as PRM and GPRM
are focused on solving multiple queries6 on the domain. A
major criteria, as stated in [12], for the success of randomized
sampling based methods is that the connectivity graph for
the map has to be resolution complete, i.e. any valid query
can always be solved via the roadmap. In order to achieve a
resolution complete roadmap, multiple randomly generated
queries7 are solved over the map using GPRM with Adaptive
Sampling. The resolution completeness of the roadmap has
been depicted in Figure 5, and further results are given in
Section IV.

5In simulations, a biased distribution was assumed, i.e. an elliptical
distribution with major axis aligned along start and goal configurations.

6A query is to find a path between initial and goal configuration. Multiple
queries is to find paths between multiple initial and goal configurations.

7Within the context of the GPRM aided by Adaptive Sampling, a new
query is a new start configuration.



(a) A new query - Adaptive Sampling (b) Solution Found

(c) Another query - Adaptive Sampling (d) Solution Found

Fig. 5. Multiple Query - Resolution Complete

IV. RESULTS AND DISCUSSION

The Adaptive Sampling methodology developed is applied
to a fully actuated point robot:

q̈ = u+ w, (5)

where q is the generalized position vector of the robot, u are
the input forces and w is a white noise term that quantifies the
uncertainty in the motion model of the robot. This case was
solved using basic GPRM, refer [18]. Numerical simulation
results are presented for a set of maps with varying degrees
of complexity. In general, the results indicate that:
• The quality of sampling improved, i.e the landmarks

were generated in required regions.
• The number of landmarks required to solve any com-

plex map is approximately reduced to half the number
required for solving the same map with basic GPRM,
with progressively higher rewards in larger/ complex
maps (refer Table I).

Each of the maps (Figure 6 - 9) discussed in the results
section has two sub-figures : sub-figure (a) represents the
initial landmarks the adaptive sampling starts with, and sub-
figure (b) represents the final solution for the map with the
additional landmarks sampled, and a path shown between
the start and goal query. In the results shown in Figure 6,
the final connectivity graph on the map shows the adaptive
nature of the sampling done to solve the map. There are
areas in the map where more sampling was done and areas
where no sampling has been done. This is something to
be expected from an adaptive sampling algorithm. Maps
with more complexity were also solved and Figures 7 - 9

represent the solutions. Some maps have always challenged
the sampling and motion planning algorithms, one of them
is the single passage map, the solution to which is given in
Figure 10. The algorithm was able to solve the map with
minimal increase in landmarks for the map.

TABLE I
RESULT COMPARISON : GPRM WITH AND WITHOUT ADAPTIVE

SAMPLING

Number of Samples Required (pmin = 0.8)
Map # basic GPRM GPRM + Adaptive Sampling Efficiency (η)
1 62 (ps = 0.896) 30 (ps = 1.0) 2.07
3 72 (ps = 0.889) 32 (ps = 0.889) 2.25
5 72 (ps = 1.0) 61 (ps = 1.0) 1.18
6 162 (ps = 0.889) 64 (ps = 0.889) 2.53
10 182 (ps = 1.0) 52 (ps = 1.0) 3.50

(a) Initial Landmarks (b) Query Solved

Fig. 6. Adaptive Sampling with GPRM : Map 1

(a) Initial Landmarks (b) Query Solved

Fig. 7. Adaptive Sampling with GPRM : Map 3

(a) Initial Landmarks (b) Query Solved

Fig. 8. Adaptive Sampling with GPRM : Map 5

The maps discussed till now have dimensions 60 x 60
units. Figure 11 represents one of the largest map the
algorithm was tried on, it is 150 x 150 units in area.
The maps discussed here were also solved using the basic
GPRM algorithm and the results when compared with the



(a) Initial Landmarks (b) Query Solved

Fig. 9. Adaptive Sampling with GPRM : Map 6

(a) Initial Landmarks (b) Query Solved

Fig. 10. Adaptive Sampling with GPRM : Map 9

adaptive sampling case, suggest that the number of samples
required to solve the maps have approximately been reduced
by half or more (refer Table I).

(a) Initial Landmarks (b) Query Solved

Fig. 11. Adaptive Sampling with GPRM : Map 10

The maps shown in the Figures 12 and 13 represent
the final solution for the map after multiple queries have
randomly been solved to achieve Resolution Completeness
(Refer III-B). As discussed , one of the major requirement
for algorithm trying to solve the multiple query case is that
the final connectivity graph for the map should be resolution
complete, i.e. be able to solve any query. These results
show that GPRM aided with Adaptive Sampling, achieves
Resolution Complete roadmaps for these maps.

V. CONCLUSIONS

This paper presents an adaptive sampling strategy for
the generalized sampling based motion planners framework.
The strategy was tested on an idealized point robot with
fully actuated dynamics with stochastic map and model
uncertainty. The numerical simulations were done on several
complicated maps. The results are promising when compared
to basic GPRM, and suggests that a solution to complicated
maps, where a basic GPRM might fail or would require a

(a) Initial Landmarks (b) Query 1 Solved

(c) Query 2 Solved (d) Query 3 Solved

Fig. 12. Multiple Query, Resolution Complete : Map 1

(a) Initial Landmarks (b) Query 1 Solved

(c) Query 2 Solved (d) Query 3 Solved

Fig. 13. Multiple Query, Resolution Complete : Map 2

high number of landmarks, is possible with significantly less
number of landmarks, using the adaptive sampling strategy.
The next step is to test this adaptive sampling strategy along
with GPRM on a high dimension system, such as an n-link
manipulator or biological systems such as a robotic arm, in
complex workspaces. The results here indicate that we have
increased the efficiency of sampling, and the probability of
success associated with the solution of GPRM algorithms.
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[23] R. Alterovitz, T. Siméon, and K. Goldberg, “The
stochastic motion roadmap: A sampling framework for
planning with Markov motion uncertainty,” in Robotics:
Science and Systems. Citeseer, 2007.

[24] S. LaValle, Planning algorithms. Cambridge Univ Pr,
2006.


