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Abstract—In this paper, we present a receding horizon so-
lution to the problem of optimal sensor scheduling problem.
The optimal sensor scheduling problem can be posed as a
Partially Observed Markov Decision Process (POMDP) whose
solution is given by an Information Space (I-space) Dynamic
Programming (DP) problem. We present a simulation based
stochastic optimization technique that, combined with a receding
horizon approach, obviates the need to solve the computationally
intractable I-space DP problem. The technique is tested on a
simple sensor scheduling problem where a sensor has to choose
among the measurements of N dynamical systems such that the
information regarding the aggregate system is maximized over
an infinite horizon.

I. INTRODUCTION

In this paper, we consider the problem of optimal sensor
scheduling such that the information gained by the sensor is
maximized. It is easily shown that the scheduling problem,
in general, may be posed as a Partially Observed Markov
Decision Problem (POMDP) whose solution is given by an
information space (I-space) Dynamic Programming (DP)
problem. We propose a receding horizon control (I-space
RHC: IS-RHC) approach to solve such I-space DP problems.
The online stochastic optimization problems that result from
the receding horizon approach are solved using a simulation
based gradient ascent technique. The IS-RHC technique is
tested on a simple scheduling problem where the sensor has
a choice between measurements of N dynamical systems.

In recent years, the optimal sensor scheduling problem
has garnered a lot of interest in the Control and Robotics
community and is variously known as Information-theoretic
Control/ Active Sensing and Dual Control [1]–[5]. Discrete
dynamic scenarios such as target tracking [3], [4], and
linear spatially distributed systems [6] have been considered,
but relatively very little has been done on the optimal
sensing of nonlinear dynamical phenomenon. In the linear
dynamical scenario, the optimal scheduling problem results in
a deterministic optimal control problem which can be solved
online using Model Predictive Control (MPC: see below for
a dicussion on the MPC literature). In the nonlinear case,
the problem is stochastic and thus, is significantly harder to
solve because of the associated computationally intractable
stochastic DP problem. In this paper, we suggest a receding
horizon control approach to the solution of such stochastic
sequential decision making problems, in particular, I-space

sequential decision making problems, that bypasses the need
to solve the stochastic DP problem.

It is very well known that stochastic control problems with
sensing uncertainty, of which sensor scheduling problems
are a special case, can be posed as a Markov Decision
Problem (MDP) on the Information state (I-state), which is
usually the conditional filtered pdf of the state of the system
[7]–[9]. Unfortunately, it is also equally well known that such
problems are notoriously difficult to solve owing to the twin
curses of dimensionality and history, so much so that such
problems have only been solved for small to moderate sized
discrete state space problems (i.e., wherein the underlying
state space of the problem is discrete). Initially, exact solution
of the POMDPs were sought [9] utilizing the convexity of
the cost-to-go function in terms of the I-state. However, these
techniques do not scale well. Thus, focus shifted to solving
such I-space problems using point based value iteration in
which a set of I-states are sampled in the I-space and an
approximate MDP defined on these states is solved using
standard DP techniques such as value/ policy iteration [10],
[11]. Recently, there has been also a growing interest in
online solution techniques for POMDPs [12]. These methods
have resulted in the solution of much higher dimensional
problems when compared to the ones that can be solved
using exact techniques, however, they still do not scale to
continuous state, observation and control space problems.

Theoretically, the DP problem can be solved online using
feedback policy gradient algorithms from the Reinforcement
Learning (RL) literature [13]–[15]. These techniques
parametrize the feedback policy in terms of a parameter θ
which used in conjunction with an approximation architecture
gives the parametrized feedback policy π(χ, θ) where χ is
the information state of the system. However, getting this
parametrization is exceedingly difficult especially in the
case of the continuous I-space problems considered in this
paper. Further, there is the issue of getting a good initial
feedback policy in terms of a good initial parameter estimate
θ0 which is again exceedingly difficult for continuous I-space
problems. In contrast, by considering the open loop policy
as advocated here and using the policy gradient technique
on such a policy, we get rid of the practical difficulties
mentioned above. This is also reflected in the fact that, to the



best of our knowledge, feedback policy gradient techniques
have not been successfully applied to continuous I-space
problems as the ones considered here (in fact, to the best of
our knowledge, existing techniques for I-space problems are
for small to moderate sized discrete problems only).

Model Predictive or Receding Horizon Control (MPC/
RHC) has been one of the most successful applications of
control theoretic techniques in the industry [16]–[18]. The
MPC technique and the Dynamic Programming technique
essentially give the same answer in that they provide the
optimal feedback control solution to deterministic optimal
control problems. The MPC techniques solve a sequence
of finite horizon open loop control problems in a receding
horizon fashion instead of solving the infinite dimensional DP
equation offline. In this fashion, constraints on the systems can
be taken into account, which is very difficult in DP, provided
the open loop optimal control problems can be solved online.
This has led to many successful applications in the process
control industry [16], [17]. We propose a similar approach to
solve I-space sequential decision making problems, wherein
a sequence of open loop stochastic optimization problems
are solved online in a receding horizon fashion. However,
in the stochastic case, the answers of the RHC and the DP
techniques do not coincide because in the DP formulation,
the optimization is over feedback policies and not open
loop control sequences. However, such DP problems, in
particular, I-space problems, are virtually computationally
intractable in continuous state spaces and thus, the IS-RHC
techniques provides a computationally attractive solution
to the I-space problems. At the same time, the empirical
results show that the IS-RHC techqniue does lead to better
payoffs in terms of information gains when compared to
a shortsighted policy. We mention here that the idea of
IS-RHC as proposed here has antecedents in the Control
Systems literature of the 60s/ 70s when researchers were
trying to obtain computationally tractable solutions to the
Dual Control problem as posed by Feldbaum in his seminal
work [19]. These references [20], [21] advocated solving the
I-space problems in an open loop receding horizon fashion
as advocated here. These techniques, in general, solved
deterministic open loop optimization problems that were
approximations of the true stochastic optimization problem in
a receding horizon fashion. Our technique is different from
this early work in that 1) we actually perform the stochastic
optimization using a simulation based technique, without
having to consider a deterministic approximation based on the
nominal path, and 2) it is developed for discrete control spaces.

The original contributions of this paper are as follows:
1) we propose an online receding horizon approach to the
solution of the POMDP problem that results from the sensor
scheduling problem, and 2) we propose a simulation based
gradient ascent approach to the solution of the stochastic
optimization problems resulting from the receding horizon
approach at every time step. Our technique is valid for

continuous state and observation space POMDP problems
with a discrete control space.

The rest of the paper is organized as follows. In Section II,
we formulate the sensor scheduling problem. In Section III,
we present the IS-RHC technique. In Section IV, we present
a simple numerical example as application of the IS-RHC
technique.

II. MOTIVATION AND PROBLEM FORMULATION

In this section, we introduce the sensor scheduling problem
that we wish to solve in this paper. We show that the problem
may be posed as an Information space (I-space) Markov
Decision Problem (MDP). However, the high dimensionality
of the resulting I-space Dynamic Programming (DP) problem
precludes a computational solution to the problem thereby
motivating the need for a computationally tractable approach
to solving the I-space MDP that is different from the DP
based approach.

Consider a dynamical system with state denoted by X
where X = [X(1), X(2), ...X(N)]′ and X(i) is a vector that
represents the state of a dynamical subsystem whose dynamics
may (or may not) be coupled with the dynamics of the other
dynamical subsystems. Let the dynamics of the entire system
be represented by the following nonlinear difference equation:

Xk = F (Xk−1) + G(Xk−1)Wk−1, (1)

where F (.) and G(.) are nonlinear functions, and {Wk} is
an uncorrelated white noise sequence. If the sub dynamical
systems were decoupled the above equation would decompose
into N independent difference equations, one for each of the
sub-states X(i). The measurement equation for the state of
the system is denoted by the following (possibly) nonlinear
equation:

zk = Huk
(Xk) + Vk, (2)

where {Vk} is a zero mean uncorrelated white noise sequence,
and Huk

(.) is a nonlinear measurement function where the
variable uk is a control variable that can take values from 1
to N , and denotes that we make a measurement of sub-state
X(i) at time k, if uk = i. This implies that we can only
measure one sub-component of X at any time step, and the
control uk denotes which sub-state is measured. Of course,
we might have the choice of making P > 1 measurements as
well, however, for notational simplicity we shall concentrate
only on P = 1 in the following. The generalization to P > 1
is quite straightforward.
Let χk denote the pdf of the state X at time k. We shall
call χk the information state of the system since it encodes
our knowledge (or lack thereof) about the system state X . In
the Gaussian case, i.e., under the approximation that the pdf
remains Gaussian, χk is encoded by the mean and covariance
of the state vector X . Given the information state (I-state) at
time k−1, χk−1, the I-state at time k, χk, will depend on the
particular component that is chosen for measurement at time



k and hence, on the control variable uk. It is also clear that
the I-state χk is dependent on the noisy observation at time
k, zk. However, zk is a random variable and thus, the I-state
χk is also random given the previous I-state χk−1 and the
control uk. In fact, the evolution of the I-state is governed by
a Markov chain (MC) whose transition density function may
be found as follows (for notational convenience, we drop the
explicit reference to time k):

p(χ′/χ, u) =
∫

p(χ′/z, χ, u)p(z/χ, u)dz, (3)

=
∫

p(χ′/z, χ)︸ ︷︷ ︸
δ(χ′−T (z,χ))

p(z/χ, u)dz, (4)

T (z, χ)(X) = ηpu(z/X)
∫

p(X/X ′)χ(X ′)dX ′, (5)

p(z/χ, u) = η =
∫

pu(z/X)(
∫

p(X/X ′)χ(X ′)dX ′)dX. (6)

In the above equations, pu(z/X) represents the likelihood
of the measurement z given that the underlying state is X
and sub-state denoted by control u is measured, and can be
found from Eq. 2, p(X/X ′) is the transition density of the
underlying Markov chain governing the evolution of the state
X (not to be confused with the MC governing the evolution
of the I-state χ) and is found from Eq. 1, χ(X) represents the
probability that the underlying true state of the system is X
and δ(.) is the indicator function for the event χ′ = T (z, χ).
The filtering Eq. 5 is the optimal Bayes recursion governing
the evolution of the conditional density of the state in a
nonlinear system [22]. This recursion is replaced by the
Kalman recursion given the approximation that the state pdf
remains Gaussian (the Kalman filter, the Extended Kalman
Filter (EKF), the Unscented Kalman Filter (UKF) etc.). We
note here that the evolution of the I-Space MDP in the field
of Partially Observed Markov Decision Processes (POMDP)
[7] is similar except that in that case the transition density of
the MC governing the evolution of the hidden state is control
dependent , i.e., p(X ′/X, u), as opposed to the measurement
equation being control dependent as is in this case through
the controlled likelihood function pu(z/X). In any case both
result in an I-state MDP whose control dependent transition
density is given by p(χ′/χ, u). The methods of this paper
apply equally well to any POMDP with a finite set of control
variables.

Our objective in this work is to maximize the total informa-
tion about the dynamical system over the infinite horizon. To
this end, let us define the information gain metric ∆I(χ, u)
denoting the expected information gain in choosing control
u at I-state χ. For instance, this could be the trace of the
reduction that a measurement would make in the estimated
covariance of the state vector X; the determinant of the
inverse of this covariance reduction (the information gain); or
divergence measures taken between forcasted values of χ and
expected values of χ if a measurement is taken. An excellent
discussion of metrics for sensor tasking problems can be found

in [23]. Let 0 < β < 1 denote a discount factor that quantifies
the fact that the information gains in the immediate future are
more important to us than the information gains further out
in the future. Thsi allows us to effectively reduce the infinite
horizon optimization into a finite horizon optimization. We
wish to solve the following discounted sequential decision
making problem over all possible feedback policies u(.):

V ∗(χ) = max
u(.)

V (χ, u(.)), where (7)

V (χ, u(.)) ≡ E[
∞∑

t=1

∆I(χt, u(χt))βt/χ0 = χ], (8)

for all possible information states χ. Since the I-state χ is
governed by a controlled Markov chain, the answer to the
above problem is provided by solving the following Dynamic
Programming problem:

V ∗(χ) = max
u

[∆I(χ, u) + β

∫
p(χ′/χ, u)V ∗(χ′)dχ′]. (9)

Thus, at least theoretically, the I-space sequential decision
problem is solved if the above DP problem can be solved.
However, in the general nonlinear case, χ belongs to a function
space (the space of pdfs). Even in the case when the Gaussian
approximation holds, the I-state χ is encoded by the mean
and joint covariance of the state X , thereby making the I-state
dimension Nd+N2d2, where d is the dimension of each sub-
component X(i) of X . Thus, it is clear that the above DP
problem resides in a continuous and very high dimensional
state space thereby making the problem computationally in-
tractable.

III. INFORMATION SPACE RECEDING HORIZON CONTROL
(IS-RHC)

In this section, we shall propose a simulation based
Receding Horizon Control approach (IS-RHC) to solve
the I-space MDP problem that was posed in the previous
section. However, the feedback solution that is obtained
using the technique is, in general, different from the feedback
solution that would be obtained if the I-space DP problem was
computationally tractable. In the special case when the I-space
sequential decision problem is deterministic, for instance when
the underlying system is linear and the pdfs are Gaussian,
the DP solution and the I-space RHC solution proposed
here are one and the same. Please see the remark at the
end of this section for a more detailed discussion of this issue.

A. Stochastic Relaxation of Optimization Problem

Consider again the statement of the I-space MDP given in
Eq. 7. Given that the expected information gain is uniformly
bounded above, i.e., |∆I(χ, u)| < M < ∞ for all (χ, u) and
given the discount factor β < 1, and given any arbitrarily
small error tolerance ε > 0, there always exists a finite time T
such that the finite horizon T-step discounted information gain
JT (χ, u0, u1..., uT ) for any infinite horizon control sequence



{ut}∞t=1 is arbitrarily close to the infinite horizon discounted
cost-to-go for the same control sequence, i.e.,

J(χ, {ut}∞t=1) = E[
∞∑

t=1

∆I(χt, ut)βt/χ0 = χ]

≈ E[
T∑

t=1

∆I(χt, ut)βt/χ0 = χ] = JT (χ, {ut}T
t=1),

in the sense that |JT (χ, {ut}T
t=1) − J(χ, {ut}∞t=1)| < ε for

all χ. Thus, in the following we shall concentrate on solving
the discounted finite horizon I-space MDP assuming that a
finite horizon T and discount factor β is given such that the
above approximation holds thereby leaving us with a finite
dimensional optimization problem as opposed to the infinite
dimensional problem resulting from the original infinite hori-
zon case.
Define the T-step information gain in following the T-step
control sequence U = {u1, · · · , uT } from I-state χ as follows:

J(χ, u1, · · · , ut) = Eχ[
T∑

t=1

∆I(χt, ut)βt/χ0 = χ], (10)

where the notation Eχ[.] denotes that the expectation is over
the sample paths {χ0 = χ, χ1, · · · , χT } that are particular
T−step realizations of the I-space process. We have dropped
the subscript T for notational convenience. The above equation
is different from Eq. 8 because the expectation above is with
respect to an open loop policy while the one in Eq. 8 is with
respect to a feedback policy (see Remark 4 at the end of this
Section for more details). Further, we define the optimal T-step
information gain as follows:

J∗(χ) = max
u1···uT

J(χ, u1, · · ·uT ).

Define a randomized policy Π = {π1, · · ·πT } where πt is
a probability vector such that πt,j = Pr(ut = j) where πt,j

denotes the jth component of πt. Thus, in the randomized
policy, we do not take a particular control action at time t,
instead we take the control action ut = j, j = 1 · · ·N, with a
probability πt,j and

∑
j πt,j = 1 for all t. Further, define the

T-step information gain in following stochastic policy Π from
I-state χ as follows:

Js(χ,Π) = Eχ,u[
T∑

t=1

∆I(χt, ut)βt/χ0 = χ],

where the notation Eχ,u[.] denotes the fact that the expectation
in the above equation is now with respect to both the sample
paths {χ1, · · ·χT } and control sequences {u1, · · ·uT }. Then,
it can be seen that the following relationship holds:

Js(χ,Π) =
∑

u1,···uT

J(χ, u1, · · ·uT )π1,u1 ..πT,uT
, (11)

the summation above is a T-dimensional sum where each ut

can take one of N values. In the following, for notational
conveneience, we shall abuse notation and denote the expected
information gain due to a stochastic policy Js(.) by J(.) (the

symbol for information gain due to a deterministic policy). We
wish to solve the optimization problem:

J∗(χ) = max
Π

J(χ,Π), (12)

given some I-state χ. We want to solve the randomized
problem since this allows us to use continuous optimization
techniques such as gradient descent where the gradients can
be found from simulations of the I-space process as shall
be shown in the following. Contrast this to the optimization
problem for the deterministic policies which results in a
combinatorial optimization problem with NT choices that
is intractable for even moderate number of choices N and
lookahead horizon T .

B. Simulation based Stochastic Gradient Method

Let us write πt,N = 1 − πt,1 − ... − πt,N−1. Then, Eq. 11
reduces to the following equation:

J(χ,Π) =
∑

u1...uT

[
N∑

j=1

J(χ, u1, ..., ut = j, .., uT )πt,j ]

π1,u1 ...πT,uT
,

=
∑

u1...uT

π1,u1 ...πT,uT
[
N−1∑
j=1

J(χ, u1, ..., ut = j, .., uT )πt,j

+J(χ, u1, ..., ut = N, ..., uT )(1− πt,1 − ...− πt,N−1)]. (13)

Note that J(χ,Π) is a multi-linear function of the probabilities
πt,j . Then, from Eq. 13, it follows that:

∂J(χ,Π)
∂πt,j

=
∑

u1..uT

π1,u1 ..πT,uT

{J(χ, u1, .., ut = j, .., uT )− J(χ, u1, .., ut = N, .., uT )}. (14)

Consider the term
∑

u1..uT
π1,u1 ..πT,uT

J(χ, u1, .., ut =
j, .., uT ). This is nothing but the expected T-step information
gain in following stochastic policy Π whenever ut = j. Define

J(t,j)(χ,Π) =
∑

u1..uT

π1,u1 ..πT,uT
J(χ, u1, .., ut = j, .., uT ), (15)

where subscript (t, j) denotes the gradient of J(χ,Π) with
respect to πt,j . Then, using the above definition and Eq. 14,
it follows that

∂J(χ,Π)
∂πt,j

= J(t,j)(χ,Π)− J(t,N)(χ,Π), (16)

for all t and all j. Thus, by simulating sample I-space trajecto-
ries under the stochastic policy Π, we can estimate the gradient
of the T-step information gain function J(χ,Π) with respect to
each of the control probabilities πt,j . Then, the policy Π can
be improved by ascending along the gradient ∂J(χ,Π)

∂Π . Note
that the gradient ∂J(χ,Π)

∂Π is a T × N matrix whose (t, j)
element is ∂J(χ,Π)

∂πt,j
. Mathematically, this means we adjust the

stochastic policy at iteration n (not to be confused with time
t) as follows:

Πn+1 = PP {Πn + εn
∂J(χ,Π)

∂Π
|Π=Πn}, (17)



where εn is a small step size and PP (.) denotes a projection
onto the space of stochastic policies P . The projection is
necessary since the new policy update need not satisfy the
constraints required to be satisified by a stochastic policy.
This projection results in a quadratic programming problem
whenever the constraints are violated. However, estimating
∂J(χ,Π)

∂Π exactly is intractable owing to the large number of
simulations required to do the estimation. Instead, we can
form a noisy estimate of ∂J(χ,Π)

∂Π from a single sample path
(simulation) of the I-space process as follows. Recall Eq. 16
and suppose that ω is a sample realization of the I-space
process, where {χ1(ω), u1(ω), · · ·χT (ω), uT (ω)} denotes the
sample I-space/ control space path, with associated informa-
tion gain J(ω). Then, the information gradient equation 16
can be approximated by using the noisy information gradient
estimate:

̂∂J(χ,Π)
∂πt,j

=
J(ω)
πt,j

if ut(ω) = j,

=
−J(ω)
πt,N

if ut(ω) = N,

= 0, o.w.. (18)

Thus, using the noisy information gradient from the Eq. 18,
the policy update equation may be written as follows:

Πn+1 = PP {Πn + εn

̂∂J(χ,Π)
∂Π

|Π=Πn
}, (19)

where ∂̂J(χ,Π)
∂Π is a T × N matrix whose (t, j) element is

∂̂J(χ,Π)
∂πt,j

. Using the noisy policy update Eq. 19 above, we
improve the policy by ascending the gradient and in the limit,
we would hope to reach an optimum point for the information
gain function J(χ,Π). A convergence analysis for the above
procedure is provided in Section IV. A few remarks regarding
the noisy information gradient equation 18 are in order here.

C. IS-RHC Algorithm

Thus far in this section, we have outlined a simulation based
stochastic gradient technique that allows us to find an optimum
of the T-step information gain function J(χ,Π) with respect to
the stochastic policy Π given some initial I-state χ and some
initial guess for the stochastic policy Π0. In the following,
we outline a receding horizon approach which in combination
with the stochastic gradient technique allows us to find an
online solution to the I-space MDP problem without having
to solve the corresponding DP equation.
Suppose at time t = 0, the I-state of the system is χ0. Also
suppose that we are given some initial guess for the optimal
T-step stochastic policy, say Π0. Then using the simulation
based noisy gradient estimate from Eq. 18 and the policy
improvement step from Eq. 19, we can ascend the gradient
of the function J(χ,Π) and find an optimum w.r.t Π. This
gives us a T-step policy Π∗

0 = {π∗1 ...π∗T }. As in the standard
Receding Horizon control approach, we apply the control u1

according to π∗1 . Next we observe the noisy measurement

at time 1, z1 and update our I-state according to the Bayes
filtering Eq. 5 to get the I-state at time 1, χ1. Assuming
that the underlying system is autonomous (note that Eq. 1 is
time independent and hence, autonomous), then we can reset
time to 0, make χ1 our new initial I-state χ0 and repeat the
procedure outlined above. In this fashion, at every time step,
given the current I-state, the T-step stochastic optimization can
be done online and applied in a receding horizon fashion.
Mathematically, the RHC-based feedback control for I-state
χ can be written as:

uRHC(χ) = et
1arg min

Π
J(χ,Π), (20)

where e1 is the first unit vector in RT (e1 isolates the control
at the first time instant of the T-step open loop control policy).
It should be clear from the above procedure that this amounts
to solving the I-space MDP problem given in Eq. 7 without
having to solve the associated DP equation, however, the
solution obtained using the IS-RHC procedure is, in genral,
not the same as that which would be obtained from solving
the DP equation (please see remark below for a more detailed
discussion). The above recursive procedure is summarized in
the pseudo-code IS-RHC.

Algorithm 1 Algorithm IS-RHC
• Given initial information state χ0, lookahead horizon T ,

initial policy Π1 and error tolerance δ

1) n = 1, define ||Π1 −Π0|| = δ + 1
2) WHILE ||Πn −Πn−1|| > δ

DO
a) Generate sample I-space path {χt(ω)}T

t=1 start-
ing with initial I-state χ0.

b) Use Eq. 18 to form the noisy estimate of the
information gradient using the sample path.

c) Use Eq. 19 to update the policy.
3) Output converged T-step policy Π∗ = [π∗1 ..π∗T ] and

choose control u1 according to π∗1 .
4) Observe noisy measurement z1 and update using Eq.

5 to obtain the new I-state χ1.
5) Set χ0 = χ1 and go to Step 1.

• End

Remark 1. The receding horizon approach is the same for
both the IS-RHC and the deterministic MPC techniques since
they amount to resolving a T-step optimization problem at
every time step using the current (I-)state as the initial
condition. However, in the deterministic MPC procedure the
optimization problem is deterministic and is usually posed
as a deterministic open loop control problem which is then
transcribed into a nonlinear programming problem (NLP)
that is solved using some standard optimization software
[24]. In our case, the optimization is stochastic and no such
analytic NLP can be posed due to the complicated nature
of the I-state process. However, sample I-space paths can be
simulated using suitable (nonlinear) filtering techniques such



as EKF/ UKF/ particle filters etc. The stochastic gradient
based technique proposed here uses these simulations to form
a noisy estimate of the information gradient and utilizes this
in a gradient ascent algorithm to converge to an optimum of
the information gain function. This stochastic optimization is
done at every time step given the current I-state, i.e., we do
multiple policy update steps for every time step. Due to the
receding horizon nature of the problems, this results in an
online solution to the I-state MDP without having to solve the
associated high dimensional I-space DP equation.

Remark 2. The feedback policy that results from the IS-
RHC (ref. Eq. 20) is different from that which would result
from solving the DP equation (ref. Eq. 8). In the DP case
the expectation is with respect to the sample paths that are
generated as a result of a feedback policy u(.) while in the
case of IS-RHC the expectation is with respect to the sample
paths generated by an open loop (not feedback) sequence of
control actions {u1, · · ·uT }. Thus, the optimization problems
are different for the two cases. The IS-RHC backs out a
feedback policy from the subsequent open loop optimizations
by recognizing that at the next time step, the particular I-
state that is observed changes the online optimization problem
which is then resolved for the current I-state and thereby con-
stitutes a feedback procedure. However, this feedback policy is
necessarily sub-optimal since the DP solution is the optimal
feedback policy. In fact, in the deterministic case, i.e., when
the I-space paths are deterministic, the two procedures are
one and the same because in that case, the open loop control
sequence obtained by solving the optimization problem online
is exactly the same as the feedback solution that would be
obtained by solving the DP equation offline (this is a well
known fact in the RHC literature [18]).

Due to paucity of space, we do not present the convergence
analysis in this paper. However, under standard stochastic ap-
proximation assumptions, it may be shown that the simulation
based information gradient technique presented here converges
to a stationary point of the underlying information reward
function.

IV. ILLUSTRATIVE EXAMPLE

In this section, we shall present an application of the
IS-RHC technique to an illustrative example containing N
decoupled 1-dimensional oscillators. The decoupled nature
of the oscillators only affects the filtering algorithm used to
generate the sample I-space paths, otherwise, the method is
independent of such coupling. The equation of motion of the
i oscillator is given by the following difference equation:

x
(i)
k = (1 + h)x(i)

(k−1) − hε(x(i)
(k−1))

3 + σwwk−1,

while the measurement equation is given by:

zk = euk
xk + σvvk,

where h is the sampling time of the system, euk
is the uth

k unit
vector in <N and denotes measurement of the uk oscillator,
wk and vk are zero-mean, unit intensity scalar Gaussian noise

Fig. 1. Comparison of information gained by converged policy and uniform
initial policy for N = 2 oscillators

processes, and σw and σv are their respective intensities.
An EKF is used to generate the I-space sample paths based on
a random generation of the noisy observations based on the
measurement noise model and the true “simulated” underlying
process. We use an EKF because of is simplicity, however,
other advanced Gaussian nonlinear filtering techniques (UKF,
iterated extended Kalman filter (IEKF)) or non-Gaussian non-
linear filters (mixture of Gaussian filters, particle filters) can
also be used: the sole purpose of the filtering technique is to
generate the sample I-space paths and allow the evaluation of
the “information gain” along these paths, which is the quantity
of interest to the stochastic gradient technique. In our case, the
I-state of the process is the 2-tuple (µ,K) where µ contains the
means of each of the component states and K is a diagonal
matrix containing the variances of the sub-components. The
information gain metric that is used is the following:

∆I(χ, u) = E[det(K−1
χ,u)− det(K−1

χ )],

where det(A) represents the determinant of the matrix A, Kχ

is the covariance of the I-state χ and Kχ,u is the covariance
of the I-state resulting from taking control u at I-state χ, note
that the future covariance Kχ,u is random and hence, the
expectation is required in the expression above. The above
metric results in the so called “D-optimal” design in the
Experimental Design literature [25], [26].

The numerical values of the different parameters used in the
system simulations are as follows: h = 0.1, ε = 0.01, σv = 0.4,
and σw = 0.5. The discount factor chosen was β = 0.9. We
also did experiments for different values of the noise intensity
parameters σv and σw, and the results that are presented here
are typical. We did experiments for a lookahead horizon of
20 time steps and for N = 2, 4and8 oscillators. The results
of our numerical simulations are shown in Figs. 1, 2 and 3.
In Figs 1, 2 and 3, we encapsulate the performance of the



Fig. 2. Comparison of information gained by converged policy and uniform
initial policy for N = 4 oscillators

Fig. 3. Comparison of information gained by converged policy and uniform
initial policy for N = 8 oscillators

stochastic gradient technique for different randomly generated
initial I-states. Given the randomly generated initial I-states,
and an initial guess at the T -step policy that is uniform, i.e.,
the probabilities πt,j = 1

N , the stochastic gradient technique
is used to improve the initial policy such that the information
gain is maximized. The cases for N= 2, 4 and 8 choices
are shown in Figs 1, 2 and 3 respectively. As can be seen
from the plots, the stochastic gradient technique does result
in improved average information gain when compared to
the initial uniform initial policy. Also, it can be seen that
the magnitude of the information gained rises with the
number of choices. It can also be seen from the plots that
the average normalized information gain, i.e., the normalized
information gain, (where the normalized information gain for
a sample I-state is ∆If (χ) − ∆Ii(χ)/∆Ii(χ) where ∆Ii(.),
∆If (.) represent the information gain for the initial and final

Fig. 4. Comparison of the RHC and shortsighted policies for a sample
initial I-state for the case of N = 2 oscillators. Note the difference in the 3
σ envelopes which shows the difference between the RHC and the one step
ahead policies.

policies respectively), averaged over the different sample
initial I-states increases from N = 2 through 8. The averaged
normalized information gain for the case of N = 2 oscillators
is 20.78%, it is 47.7% for the case of N=4 oscillators and is
127.1% for the case of N = 8 oscillators. Thus, the technique
results in better payoffs as the number of choices N is
increased. A similar behaviour is observed as the lookahead
horizon T is increased. However, it has to be noted that
as N,T increase, the variance of the stochastic gradient
technique increases and can lead to failure more fraction of
times, i.e., cases where the information gain of the converged
policy is lower than the initial policy. However, in such cases,
the variance of the technique can be used to our benefit as
repeating the gradient descent process several times (in our
case, less than 5 times) usually results in an improved policy
almost always. This can be evidenced form the fact that none
of the converged policies in Figs. 1, 2 and 3 have information
gain lower than the intial policy.

We applied the stochastic gradient technique to solve the
I-space MDP in a receding horizon fashion. We compared the
solution of the I-space RHC to a greedy approach that looks
only one step ahead. The RHC has a lookahead horizon of 15
steps. We performed the RHC vs. Greedy policy simulations
for the N = 2 case. We evaluated the information gained by
the two techniques over a 20 step horizon for a discount factor
of β = 0.8. It is seen that the RHC technique does outperform
the greedy approach in the N = 2 case on an average (over
different initial I-states) by a factor of about 20%. In these
experiments, at the initial time step, the guess initial policy
is chosen to be a uniform policy. In the subsuquent receding
horizon time windows, the solution of the optimization in



the previous time window is used as the initial guess for the
subsuquent window along with a uniform distribution for the
final time step (this is standard practice in the RHC literature
[18]). This process of subsuquent initializations speeds up the
convergence of the gradient ascent algorithm and also helps
it converge to good solutions online. Using a uniform initial
policy for the subsuquent receding horizon time windows
usually results in very sub-par performance as the gradient
technique fails to converge. In Fig. 4, we have shown the
errors in the oscillator state estimates along with their 3σ
bounds, for both the RHC and greedy policies for a sample
initial I-state in the case of N = 2 oscillators. The figure
shows that the sample behavior of the I-states for the two
policies is quite different, as is evident from the distinct 3σ
envelopes for the two cases and confirms the benefits of using
a longer lookahed horizon when compared to a shortsighted
one step ahead policy.

Hence, the above illustrative example shows that the
stochastic gradient based technique almost always increases
the information gained regarding the system when compared
to the uniform initial policy. Further, we see that the fractional
amount of information gained increases as the number of
choices N increases. This simple example also provides em-
pirical evidence that the IS-RHC technique does indeed result
in control policies that maximize the information gained about
the system over the long run when compared to shortsighted
policies.

V. CONCLUSION

In this paper, we have proposed a receding horizon control
based approach to solve I-space MDP, termed IS-RHC, in-
stead of solving the associated computationally intractable DP
equation. We proposed a simulation based stochastic gradient
technique for solving the open loop stochastic optimization
problem that results at every time step due to the IS-RHC
technique. We have tested the IS-RHC on a simple example
involving N decoupled 1-dimensional oscillators and the re-
sults show that the IS-RHC technique does result in significant
improvement in the information gained regarding the system
when compared to a shortsighted policy. Further research will
focus on testing the IS-RHC on more realistic examples as
well as extending the formulation such that constraints on the
information process and the problem of decentralized control
for multiple sensors can be taken into account.
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