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Introduction:	Full	SLAM

Drive	robot	around	environment

Store	sensor	data	(odometry,	range-
bearing	etc.)

Solve	non-linear	optimization	problem
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The	Problem

Culprit: Odometry-based	guess	to	initialize	
optimizer	can	be	arbitrarily	bad

Non-linear	optimization-based	SLAM	solvers	
often	get	stuck	in	local	minima



RFM-SLAM	@	ICRA	2017,	SingaporeEstimation,	Decision	and	Planning	Lab 4

Example	Problem:	2D	Feature-based	SLAM

Ground	Truth

Odometry-based	Initial	Guess

GTSAM	Estimate
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Traditional	approach	may	lead	to	non-robust	estimates

Catastrophic	Failure
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The	Solution:	Separate	Orientation	Estimation

Compute	relative	orientation	constraints	between	poses

Solve	On-Manifold	orientation	optimization	problem

Solve	linear	least	squares	problem	for	position	estimates
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Result:	RFM-SLAM

RFM-SLAM	avoids	catastrophic	failure
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Key	Takeaway

Separate	Orientation	and	Position	
Estimation	for	Robust	SLAM	Solutions
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Method:	Step	1

Robot

Features
Relative	Displacement	from	Robot	to	Feature

Relative	
Displacement	
from	Feature	
to	Feature
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Method:	Step	2

Setup	Relative	orientation	constraint	from	feature	to	feature	measurements
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Method:	Step	3

Solve	on-manifold	optimization	using	MANOPT*

*Boumal,	N.,	Mishra,	B.,	Absil, P.A.	and	Sepulchre,	R,	“Manopt:	a	Matlab Toolbox	for	Optimization	on	
Manifolds”,	Journal	of	Machine	Learning	Research,	2014,	Vol.	15	1455--1459
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Method:	Step	4

Solve	linear	least	squares	problem	to		compute	robot	and	landmark	position
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Result:	Increasing	odometry	noise
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Result:	Increasing	range-bearing	noise

⍺:	Odometry	noise	scaling	factor β:	Range-bearing	noise	scaling	factor
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Problem:	Non-linear	SLAM	solver	prone	to	local	minima

Solution:	Decouple	orientation	from	position

Result:

Accuracy	degrades	gracefully	as	noise	goes	up

Empirical	results	show	RFM-SLAM	avoids	catastrophic	failure

Impact:	Use	RFM-SLAM	to	bootstrap	non-linear	solvers

Summary
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Software

https://github.com/sauravag/edpl-rfmslam

Estimation,	Decision	and	Planning	Lab
www.edplab.org


