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Abstract— In this paper, we consider the problem of model
reduction of large scale systems, such as those obtained through
the discretization of PDEs. We propose a randomized proper
orthogonal decomposition (RPOD) technique to obtain the
reduced order models by randomly choosing a subset of the
inputs/outputs of the system to construct a suitable small sized
Hankel matrix from the full Hankel matrix. It is shown that
the RPOD technique is computationally orders of magnitude
cheaper when compared to techniques such as the Eigensys-
tem Realization Algorithm (ERA)/Balanced proper orthogonal
decomposition (BPOD) while obtaining the same information
in terms of the number and accuracy of the dominant modes.
The method is tested on a linearized channel flow problem.

I. INTRODUCTION

In this paper, we consider the problem of model reduction
of systems that are governed by partial differential equations
(PDE). We propose a randomized version of the snapshot
proper orthogonal decomposition technique that allows us
to form a reduced order model (ROM) of the PDE of
interest in terms of the eigenfunctions of the PDE operator
by randomly choosing a subset of the input/output snapshot
ensembles, and as a consequence, construcing a sub-matrix
of the full Hankel matrix. The RPOD procedure requires
orders of magnitude less computation when compared to the
Balanced proper orthogonal decomposition (BPOD)/ Eigen-
system Realization Algorithm (ERA) procedure applied to
the full-order Hankel matrix resulting from the discretization
of a PDE with a large number of inputs and outputs. The
technique is applied to a linearized channel flow problem to
illustrate the procedure.

Model reduction has attracted considerable attention in the
past several decades. It is a technique that constructs a lower-
dimensional subspace to approximate the original higher-
dimensional dynamic system. Balanced POD [1], [2] is a
model reduction technique based on the balanced truncation
[3] and the snapshot POD technique [4]. Balancing transfor-
mations are constructed using the impulse responses of both
the primal and adjoint system, and hence, the most control-
lable and observable modes can be kept in the ROM. In
1978, Kung [5] presented a new model reduction algorithm
in conjuction with the singular value decomposition (SVD)
technique, and the ERA [6] was developed based on this
technique. The BPOD is equivalent to the ERA procedure
[7], and forms the Hankel matrix using the primal and adjoint
system simulations as opposed to the input-output data as
in ERA. More recently, there has been work on obtaining
information regarding the dominant modes of a system, based
on the snapshot POD followed by a diagonalization of the
ROM matrix to extract the modes, called the dynamic mode
decomposition (DMD) [8], [9].

The primary drawback of BPOD and ERA is that for a
large scale system, such as that obtained by discretizing a
PDE, with a large number of inputs/outputs, the compu-
tational burden incurred is very high. There are two main
parts to the computation: first is to collect datasets from
computationally expensive primal and adjoint simulation in
order to generate the Hankel matrix. The second part is to
solve the singular value decomposition (SVD) problem for
the resulting Hankel matrix. Thus, our primary goal in this
paper is to reduce the computation required to obtain these
ROMs without losing accuracy.

Improved algorithms based on BPOD have been pro-
poseded to reudce the computational cost of constructing
full Hankel matrix. For example, [2] proposed an output
projection method to address the problem when the number
of outputs is large. The outputs are projected onto a small
subspace via an orthogonal projection Pr that minimizes the
error between the full impulse response and the projected
impulse response. However, the method cannot make any
claim regarding the closeness of the solution to one that
is obtained from the full Hankel matrix, and is still faced
with a very high computational burden when the number of
inputs is large. There have also been methods proposed [10]
to reduce the number of snapshots, however, the primary
problem regarding large number of inputs/ outputs remains
the same. In contrast, we show that by randomly sampling the
inputs and outputs, we solve a much smaller problem while
extracting almost the same information about the system as
would be from the full Hankel matrix.

There are two major classes of randomization algorithms
used for low-rank matrix approximations and factorizations:
random sampling algorithms and random projection algo-
rithms. For a large scale matrix H , random sampling al-
gorithms construct a rank k approximation matrix Ĥ by
choosing and rescaling some columns of H according to
certain sampling probabilities [11], so the error satisfies
‖H−Ĥ‖F ≤ ‖H−H(k)‖F +ε‖H‖F , with high probability,
where H(k) is a best rank k approximation of H , ε is a
specified tolerance, and ‖H‖F denotes the Frobenius norm
of H. This is not a suitable error bound when‖H‖F is
large. Thus, in [12], columns are sampled according to
leverage scores, where the leverage socres are calculated by
performing the SVD of H , so that the error satisfies ‖H −
Ĥ‖F ≤ (1+ ε)‖H−H(k)‖F , with high probability. A direct
application of both algorithms would require the full Hankel
matrix to be constructed, however, such a construction of
the Hankel matrix is computationally prohibitive when the
number of inputs/outputs is large. Further, the leverage scores
are calculated by performing the SVD of the Hankel matrix,



which is also computationally prohibitive owing to the size
of the problem.

In random projection method [13], the large matrix H is
projected on to an orthonormal basis Q such that the error
satisfies ‖H − QQ∗H‖ ≤ (1 + ε)‖H − H(k)‖ with high
probability, where ‖H‖ denotes the spectral 2-norm of H .
A gaussian test matrix Ω is generated, and the orthonormal
basis Q is constructed by performing a QR factorization of
the matrix product HΩ. The bottleneck of this algorithm
remains, as above, the construction of the full Hankel matrix,
which is prohibitively expensive. Moreover, the results are
based on the Gaussian property of the sampling matrix Ω,
which is not satisfied in our case, since we do not want to,
and cannot sample every primal/dual trajectory.

There has been great interest in the Systems and Control
community over the past several years in tractable random-
ized techniques to solve computationally difficult systems
and control design problems [14], [15]. The RPOD technique
can be construed as one such technique for the model
reduction of large scale dynamical systems. In particular, it
is perhaps most closely related to the “Scenario Method”
for systems and control design [15]. The scenario method
obtains bounds on the number of convex constraints that
need to be sampled from an uncountable set of constraints
such that the solution to an associated robust control problem
can be guaranteed to satisfy an ε-fraction of the constraints,
with probability greater than 1 − β where ε, β are design
parameters. In RPOD, we derive a bound for the total number
of columns that need to be sampled from a low rank matrix
(say rank l) containing a large number of columns, given that
the columns are spanned by modes {v1, · · · , vl}, such that
the sampled matrix has the same rank as the large matrix with
probability at least 1−β, given that the minimum fraction of
the columns in which any of the spanning modes vi is present
is ε̄. The scenario method obtains the bound 2

ε (log( 1
β ) + d)

where d is the dimension (size) of the problem, whereas our
bound is 1

ε̄ log( lβ ) where the rank l is the size of our problem.
The derivation of our bound, albeit different from the bound
in [15], is nonetheless inspired by the developments in that
reference.

We had introduced an iterative POD method (I-POD) in
[16], [17] that recursively obtains eigenfunctions of a linear
operator. We use one input trajectory and one output trajec-
tory to construct a small sub-Hankel matrix, and extract the
dominant modes corresponding to this data set. We extract
all the relevant modes from all the input/output trajectories
by doing I-POD recursively. The main practical problem
associated with the I-POD is the orthogonality between
different modes. Numerical error exists when extracting
dominant modes from different trajectories, and therefore
reorthogonalization is needed, which typically leads to nu-
merical instability, and thus, the practical performance of the
method is significantly worse than comparable methods such
as BPOD.

The main contribution of the RPOD method is that by
randomly choosing some of the input/output trajecotries
and snapshots, we only collect parts of the input/output

ensemble to form a suitable sub-matrix of the full Hankel
matrix. Thus, the computations required to form the sub-
Hankel matrix, and the subsequent SVD, is computationally
orders of magnitude less expensive when compared to the
construction/ SVD of the full Hankel matrix. We show that
the sub-Hankel matrix we construct retains almost the same
information as the full Hankel matrix in terms of the numbers
and accuracy of the underlying modes.

The rest of the paper is organized as follows. In Section II,
we briefly show how to construct the eigenfunctions of the
original system using the cross-correlation matrix between
the input and output impulse responses. In Section III, we
introduce the randomized proper orthogonal decomposition
(RPOD) method where we randomly choose a subset of the
inputs/outputs of the system to construct a sub-Hankel matrix
when the number of inputs/outputs are large. Then we show
that such an approximation contains the same information
that is contained in the full Hankel matrix in terms of the
dominant modes, given that the number of sampled inputs/
outputs satisfies a certain bound. In Section IV, we provide
computational results comparing the RPOD with the BPOD
for a linearized channel flow problem.

II. EIGENFUNCTION RECONSTRUCTION TECHNIQUE

Consider a stable linear input-output system

xk = Axk−1 +Buk,

zk = Cxk, (1)

where xk ∈ <N , uk ∈ <p, zk ∈ <q are the state, inputs,
and outputs at discrete time instant tk respectively. B =
[b1, · · · bp] is the input influence matrix and C = [c1, · · · cq]′
is the output influence matrix, x′ denotes the transpose
of x. The dimension of the state N is very large. In the
case of a PDE, the above system is obtained via a suitable
discretization of the PDE using techniques such as Finite
Elements (FE)/ Finite Differences (FD).

In this section, we introduce an eigenfunction recon-
struction technique based on BPOD. The eigenfunction of
the POD operator that are present in input/output data are
reconstructed and used as a reduced order basis. This helps
us in distingushing underlying invariant modes when we
implement the RPOD algorithm introduced in section III.

The impulse response of the primal system is collected
by using bj , j = 1, 2, · · · , p, as initial conditions for the
simulation of the system

xk = Axk−1. (2)

We take M1 snapshots across the trajectories at time
t1, t2, · · · , tM1 , and construct the primal snapshot ensem-
ble X = [x1(t1), · · · , x1(tM1), · · · , xp(t1), · · · , xp(tM1)] ∈
<N×pM1 , where xj(tk) is the state snapshot at time tk
with bj as the initial condition, k = 1, 2, · · · ,M1 and
j = 1, 2, · · · , p.

Similarly, we use the transposed rows of the output matrix,
c′i, i = 1, 2, · · · , q, as the initial conditions for the simula-



tions of the adjoint system A′,

yk = A′yk−1, (3)

and M2 snapshots are taken across trajectories at time
t̂1, · · · , t̂M2

, leading to the adjoint snapshot ensemble Y =
[y1(t̂1), · · · , y1(t̂M2), · · · , yq(t̂1), · · · , yq(t̂M2)] ∈ <N×qM2 ,
where yi(t̂k) is the state snapshot of the adjoint system at
time t̂k with c′i as the initial condition, k = 1, 2, · · · ,M2

and i = 1, 2, · · · , q. The Hankel matrix H is defined as:

H = Y ′X. (4)

First, we solve the SVD problem of the matrix H:

H = UΣV ′. (5)

Assume that Σp consists of the first l non-zero singular
values of Σ, and (Up, Vp) are the corresponding left and
right singular vectors from (U, V ), then the POD projection
matrices can be defined as:

Tr = XVpΣ
− 1

2
p , Tl = Y UpΣ

− 1
2

p . (6)

Tr and Tl are the BPOD bases, and the ROM constructed
using BPOD is:

Ã = T ′lATr, B̃ = T ′lB, C̃ = CTr. (7)

We can see that the POD bases Tr and Tl change when
the collected snapshots X and Y are changed, thus, Tr and
Tl constructed using BPOD method are not invariant to the
datasets X and Y . We want to construct a global set of POD
bases which remains invariant to the particular snapshots X
and Y .

Assume that Ã in (7) has a full set of distinct eigenvectors.
Let (Λij , P ) represent the eigenvalue-eigenvector pair for Ã,
i.e.,

Ã = T ′lATr = PΛijP
−1, (8)

Thus it follows that

Λij = (P−1T ′l )︸ ︷︷ ︸
Φ′ij

A (TrP )︸ ︷︷ ︸
Ψij

. (9)

Here, Tr, Tl are the POD transformation bases and P is
the ROM eigenfunction matrix. The transformation Ψij , Φij
denote the composite transformation from the original state
space to the POD eigenfunction space, and in turn to the
ROM eigenfunction space. Thus, the reduced order model
is: 

Ar = Λij = Φ′ijAΨij ,

Br = Φ′ijB,

Cr = CΨij .

(10)

In the following, we relate the eigenvalues and eigenvec-
tors of A to the diagonal form Λij and the transformation
Ψij ,Φij .

Suppose the snapshot ensembles X ∈ <N×pM1 and Y ∈
<N×qM2 are spanned by r1 and r2 right /left eigenvectors
of A respectively. Since some of the eigenvectors will decay

fast, and are not dominant in the M1 and M2 snapshot
ensembles, thus, r1 ≤ N and r2 ≤ N . Also, we take enough
snapshots so that r1 ≤ M1 and r2 ≤ M2. Notice that the
active left and right eigenvectors in the snapshots Y and X
may not be the same, so we denote X = VSαS + VDδαD,
Y = USβS+UDδβD, where (US , VS) are the active left and
right eigenvectors corresponding to the same eigenvalues ΛS ,
(UD, VD) are the rest of the left and right eigenvectors, and
αS , βS , δαD, δβD are the coefficient matrices.

Assumption 1: We assume that the contributions of the
left and right eigenvectors corresponding to the different
eigenvalues are small, i.e., ‖δαD‖ ≤ C1ε, ‖δβD‖ ≤ C2ε,
where C1, C2 are some constant, and ε is sufficiently small.

Under Assumption 1, the following result holds.
Proposition 1: Denote (ΛS , US , VS) as the actual eigen-

values, left and right eigenvectors of A which are active in
both sets of snapshots X and Y . The errors in eigenvalue and
eigenvector reconstruction are ‖Λij − ΛS‖ ≤ k1ε

2, ‖Φij −
US‖ ≤ k2ε, and ‖Ψij − VS‖ ≤ k3ε, i.e., (Λij ,Φij ,Ψij)
are arbitrarily good approximation of the eigenvalues, left
and right eigenvectors active in both sets of snapshots X
and Y , where k1, k2, k3 are some constants, ε is defined in
Assumption 1, and is sufficiently small.

The proof uses the eigenvalue perturbation theory [18],
and is shown in Appendix .

Remark 1: If Assumption 1 is not satisfied, we can still
prove that ‖Λij − ΛS‖ ≤ kε, where k is some constant.
However, Ψij = VS + Vcō∆cō, and Φij = US + Uc̄o∆c̄o.
Here, Vcō are the most controllable but not observable
right eigenvectors, and Uc̄o are the most observable but not
controllable left eigenvectors, and ∆cō and ∆c̄o are suitable
coefficient matrices. Thus, the Markov parameters of the
ROM are:

ĥk = CΨij(Λij)
kΦ′ijB

= C(VS + Vcō∆cō)(Λij)
k(U ′S + ∆′c̄oU

′
c̄o)B. (11)

However, CVcō ≈ 0 because of the unobservability of Vcō,
and U ′c̄oB ≈ 0 because of the uncontrollability of Uc̄o. Thus,
the ROM Markov parameters

ĥk ≈ CVS(ΛS)kU ′SB, (12)

are the same as those that would be constructed using only
(VS , US) without the spillover from Vcō and Uc̄o, i.e., in
terms of the impulse response, the spillover from Vcō and
Uc̄o does not matter.

III. RANDOMIZED PROPER ORTHOGONAL
DECOMPOSITION METHOD

From Section II, we see that we can construct POD
bases, and extract the underlying eigenvectors of the original
system, which are invariant to the particular primal and
adjoint datasets X and Y . Assume that the rank of the
full Hankel matrix H = Y ′X is l. Since the dimension of
the systems governed by PDEs may be very large due to
the discretization, the computation to construct the Hankel
matrix and solve the SVD problem is very expensive, es-
pecially when there are a large number of inputs/ outputs.



The eigenfunction reconstruction technique from Section II
suggests that if we can construct a sub-Hankel matrix Ĥ
which is still rank l, then the underlying l eigenmodes can be
recovered from the sub-Hankel matrix. Thus, in this section,
we introduce a randomized proper orthogonal decomposition
(RPOD) method based on the eigenfunction reconstruction
technique which randomly chooses a small subset of the
inputs/ outputs, and constructs a sub-Hankel matrix from
the full Hankel matrix such that the information encoded
in the sub-Hankel matrix is almost the same as that in the
full Hankel matrix, in terms of the number and accuracy of
the underlying modes that can be extracted.

Consider the stable linear system (1), we randomly choose
r columns from B according to the uniform distribution,
denoted as B̂, and randomly choose s rows from C with
uniform distribution, denoted as Ĉ. Denote (.)(:,i) as the ith
column of (.), and (.)(j,:) as the jth row of (.).

The original Hankel matrix H was previously defined in
(4). The reduced order Hankel matrix Ĥ is then constructed
using B̂, Ĉ and randomly choose m1 and m2 snapshots
from the primal and adjoint snapshots (t1, · · · , tM1

) and
(t̂1, · · · , t̂M2

) with uniform distribution respectively. Thus,
the RPOD technique can be seen as randomly choosing p̂m1

columns from the H matrix to form the H̃ matrix, and then
randomly choosing q̂m2 rows from the H̃ matrix to form
Ĥ . Alternatively, it essentially is equivalent to choosing a
suitable random subset of the columns of the primal/ adding
responses, namely X̂ and Ŷ to generate the sub-Hankel
matrix Ĥ = Ŷ ′X̂ . The RPOD procedure is summarized in
Algorithm 1.

First, we provide a general result regarding randomly
choosing a rank “l” sub-matrix from a large rank “l” matrix.
Suppose W ∈ <N×a is a rank l matrix, and suppose that W
is spanned by the vectors {v1, v2, · · · vl}, where vi ∈ <N ,
l � N, a. Let W (i) denote the set of columns of W that
contain the vector vi. Let

εi =
no.(W (i))

N
, (13)

denote the fraction of the columns in W in which vector vi
is present. Further let

ε̄ = min
i
εi, (14)

and note that ε̄ > 0.
Proposition 2: Let M columns be sampled uniformly

from among the columns of the matrix W without re-
placement, and denote the sampled sub-matrix by Ŵ . Let
(Ω,F , Pf ) denote the underlying probability space for the
experiment. Given any β > 0, if the number M is chosen
such that

M > max(l,
1

ε̄
log(

l

β
)), (15)

then Pf (ρ(Ŵ ) < l) < β, where ρ(Ŵ ) denotes the rank of
the sampled matrix Ŵ .

Proof: Let Ŵ (ω) = {W1(ω), · · ·WM (ω)} denote a
random M-choice from the columns of W . If the ensemble

Algorithm 1 RPOD Algorithm
1) Pick ci ∈ {1, · · · , p} with probability P [ci = k] =

1
p , k = 1, · · · , p, i = 1, · · · , p̂

2) Pick rj ∈ {1, · · · , q} with probability P [rj = k] =
1
q , k = 1, · · · , q, j = 1, · · · , q̂

3) Set B̂(:,i) = B(:,ci), Ĉ(j,:) = C(rj ,:)

4) Randomly choose m1 snapshots from (t1, t2, · · · , tM1)
with uniform distribution, denoted as t = t̃1, · · · , t̃m1

. Use B̂(:,i), i = 1, · · · , p̂ as the initial conditions
for the primal simulation, collect the snapshots at
t = t̃1, · · · , t̃m1

, denoted as X̂
5) Randomly choose m2 snapshots from (t̂1, · · · , t̂M2)

with uniform distribution, denoted as t = t̃1, · · · , t̃m2 .
Use Ĉ ′(j,:), j = 1, · · · , q̂ as the initial conditions for
the adjoint simulation, collect the snapshots at t =
t̃1, · · · , t̃m2

, denoted as Ŷ
6) Construct the reduced order Hankel matrix Ĥ = Ŷ ′X̂
7) Solve the SVD problem of Ĥ = ÛpΣ̂pV̂p
8) Construct the POD basis: T̂r = X̂V̂pΣ̂

−1/2
p , T̂l =

Ŷ ′Û ′pΣ̂
−1/2
p

9) Construct the matrix: Ã = T̂ ′lAT̂r, and (Λ̂, P̂ ) are the
eigenvalues and eigenvectors of Ã

10) Construct new POD basis: Φ̂′ij = P̂−1T̂ ′l and Ψ̂ij =

T̂rP̂
11) The ROM is: Âr = Φ̂′ijAΨ̂ij , B̂r = Φ̂′ijB, Ĉr = CΨ̂ij

Ŵ has rank less than l then note that at least one of the
vectors vi has to be absent from the ensemble. Define the
events

G = {ω ∈ Ω : ρ(Ŵ (ω)) < l}, and (16)

Gi = {ω ∈ Ω : Wk(ω) ∈ W̃ (i),∀k}, (17)

where W̃ (i) denotes the complement set of columns in W
to the set W (i). Due to the fact that the ensemble Ŵ is rank
deficient if all of the columns of Ŵ are sampled from at
least one of the sets W̃ (i), and the fact that if Ŵ is rank
deficient, all the columns of Ŵ have to be sampled from at
least one of the sets W̃i, it follows that:

G =
⋃
i

Gi. (18)

If we sample the M columns with replacement, Pf (Gi) =
(1 − εi)M , and Pf (Gi) ≤ (1 − εi)M if we sample the M
columns without replacement. Thus, it follows that

Pf (G) ≤
l∑
i=1

Pf (Gi) =

l∑
i=1

(1− εi)M ≤ l(1− ε̄)M . (19)

Hence, it follows that Pf (ρ(Ŵ ) < l) ≤ l(1 − ε̄)M . If we
require this probability to be less than some given β > 0,
then, it can be shown by taking log on both sides of the
above expression that M should satisfy

M >
1

ε̄
log(

l

β
). (20)



Noting that Ŵ is rank deficient unless M ≥ l, the result
follows.

Remark 2: Effect of l, ε̄ on the bound M: It can be seen
that the number of choices M is influenced primarily by ε̄
and not significantly by the number of active modes/ rank
of the ensemble l, since l appears in the bound under the
logarithm. Thus, the difficulty of choosing a sub-ensemble
that is rank l is essentially decided by the fraction ε̄i of the
ensemble in which the rarest vector vi is present. Moreover,
note that as the number l increases, we need only sample
O(l) columns to have a rank “l” sub-ensemble.

Remark 3: Effect of Sampling non-uniformly: In certain
instances, for instance, when we have a priori knowledge,
we may choose to sample the columns of W non-uniformly.
Define

εΠi =

N∑
j=1

1i(Wj)πj , (21)

where πj is the probability of sampling column Wj from the
ensemble W , and 1i(Wj) represents the indicator function
for vector vi in column Wj , i.e, it is one if vi is present in Wj

and 0 otherwise. Note that εi as defined before is the above
quantity with the uniform sampling distribution πj = 1

N for
all j. It is reasonably straightforward to show that Proposition
2 holds with ε̄Π = mini ε̄i

Π for any sampling distribution
Π (we replace εi in (19) with ε̄Πi ). The effect of a good
sampling distribution is to lower the bound M by raising
the number ε̄Π over that of a uniform distribution. This may
be an intelligent option when otherwise the bound on M
with uniform sampling can be very high, for instance when
one of the vectors vi is present in only a very small fraction
of the ensemble W . However, we might have some a priori
information regarding the columns where vi may be present
and thus, bias the sampling towards that sub-ensemble.

Next, it can be seen how the RPOD procedure extends the
above result to the Balanced POD scenario where we con-
sider the Hankel matrix H = Y ′X , where H ∈ <qM2×pM1 .
The RPOD chooses a small number of inputs/outputs,
namely p̂/q̂ respectively, and then chooses a small number of
times, m1 for the input and m2 for the outputs, at which to
sample the input/output trajectories, and form the sub-Hankel
matrix Ĥ ∈ <q̂m2×p̂m1 . This is equivalent to a uniform
sampling of the columns of the input and output ensembles
X and Y respectively to form Ĥ = Ŷ ′X̂ .

Under Assumption 1, the output and input ensembles Y
and X are spanned by l left eigenvectors US and right
eigenvectors VS respectively. Define:

ε̄X = min
i
εX,i, ε̄Y = min

j
εY,j , (22)

where εX,i is the fraction of columns in X in which the
right eigenvector vi is present, and εY,j is the fraction of the
columns in Y in which the left eigenvector uj is present.

Note that due to Proposition 2, given any β > 0, if we
choose p̂m1 and q̂m2 satisfy the bounds:

p̂m1 > max(l,
1

ε̄X
log(

l

β
)),

q̂m2 > max(l,
1

ε̄Y
log(

l

β
)), (23)

then the probability of Ĥ having rank less than l is less than
γ = 1− (1−β)2, since then the probability that the ranks of
the sampled input and output ensembles are less than l, is less
than β. Thus, if we repeatedly choose K such ensembles with
replacement, the probability of having a sub-Hankel matrix
Ĥ that is still less than rank l after the K picks, has to be
less than γK . Thus, the probability of choosing a rank l sub-
Hankel matrix Ĥ exponentially approaches unity with the
number of trials. Again, noting that the value of β does not
have a significant influence on the bounds above, it follows
that β can be chosen to be quite small without significantly
affecting the number of columns that need to be chosen to
satisfy the confidence level of β, and thus, the probability of
choosing a rank l sub-Hankel matrix can be made arbitrarily
high by judiciously choosing the number of columns in the
input/ output ensembles according to the bounds in (23).

We summarize the development above in the following
proposition.

Proposition 3: Let Hankel matrix H = Y ′X ∈
<qM2×pM1 with p inputs, q outputs, M1, M2 time snapshots
in every input and output trajectory respectively. Let the left/
right eigenvectors US = {u1, · · ·ul}, and VS = {v1, · · · vl}
denote the eigenvectors spanning the input and output en-
sembles X and Y respectively. Let ε̄X , ε̄Y be as defined in
(22) and β > 0 be given. Suppose we construct a sub-Hankel
matrix Ĥ according to the RPOD procedure: by uniformly
sampling p̂ inputs with m1 time snapshots, and q̂ outputs
with m2 snapshots, and that p̂m1 and q̂m2 are chosen as
in (23), then the probability that the sub-Hankel matrix has
rank less than l is less than γ = 1− (1−β)2. Moreover, the
probability that after K RPOD choices, with replacement,
the probability that the sub-Hankel matrix is less than rank
l is less than γK .

The following corollary immediately follows due to the
developments in section II.

Corollary 1: Let (ΛS , US , VS) be the eigenvalues, left and
right eigenvectors underlying the data in the full Hankel
matrix. Given any β > 0, and that a sub-Hankel matrix Ĥ is
chosen as in Proposition 3, the same (ΛS , US , VS) triple can
be extracted from the sub-Hankel matrix Ĥ with probability
at least (1 − β)2, and hence, with probability (1 − β)2, the
information contained in H and Ĥ is identical in terms of
the (ΛS , US , VS) triple.

Remark 4: Several remarks are made below about the
above results.

1) The fractions ε̄X and ε̄Y are metrics of the “difficulty”
of the problem. For instance, if all the relevant modes
were controllable/observable from every input/output,
then these fractions are unity, and any RPOD choice
would have rank l. The lower these fractions are, the
higher the number of rows and columns q̂m2 and p̂m1

need to be chosen such that Proposition 3 holds for
the sampled sub-Hankel matrix. This corresponds to a
mode, or set of modes, being controllable/ observable



only from a very sparse set of actuator/ sensor locations
respectively.

2) We do not know ε̄X , ε̄Y a priori, and thus, we cannot
directly apply Proposition 3. In practice, we repeatedly
sample sub-Hankel matrices, and check the underlying
eigenmodes from each choice. If the underlying modes
from different choices are identical, then we can give
a guarantee that the Hankel matrix is actually rank l,
given a difficulty level ε̄. Thus, we are able to quantify
the confidence in our ROMs for different values of the
difficulty level ε̄. Typically, we have seen that if the
number of rows/ columns sampled are large enough,
we are able to extract all the relevant modes.

3) We can also vary the size of the sampled sub-Hankel
matrices which in turn raises the probability of sam-
pling a random choice with rank equal to that of the
full Hankel matrix.

4) If we have a priori knowledge of the system, we can
sample the sub-Hankel matrix using some sampling
distribution other than the uniform distribution func-
tion, which as mentioned previously, has the effect
of raising the fractions ε̄X , ε̄Y , and thus, lower the
required size of the sub-Hankel matrix.

5) In reality, the Hankel matrix is not exactly rank l but
approximately rank l. In such a case, we can appeal
to Proposition 1 to show that the errors incurred due
to this fact is small if the contribution from the modes
other than the dominant l modes are small.

Remark 5: Note that Proposition 3 and Corollary 1 as-
sume that assumption 1 is satisfied. If it is not, then, the
primal snapshots X are spanned by {VS , Vcō} and the
adjoint snapshots Y are spanned by {US , Uc̄o}, where VS =
{v1, · · · , vl}, US = {u1, · · · , ul}, Vcō are the unobservable
modes and Uc̄o are the uncontrollable modes. The extracted
eigenvalues Λij = Λs = diag{λ1, · · · , λl} still correspond
to the most controllable and observable modes. However,
the projection vectors (Φij ,Ψij) extracted from H , and
(Φ̂ij , Ψ̂ij) from Ĥ , are no longer the most observable and
controllable modes (US , VS), but contain spillover from the
unobservable and uncontrollable modes Vcō and Uc̄o (See Re-
mark 1). However, due to Remark 1, we see that the impulse
response of the system obtained from H is the same as that
obtained from Ĥ since: CΨijΛ

k
ijΦ
′
ijB ≈ CVSΛkSU

′
SB ≈

CΨ̂ijΛ
k
ijΦ̂
′
ijB, because of the uncontrollability and unob-

servability of the modes Uc̄o and Vcō respectively. Hence,
in terms of the impulse response, the information extracted
from Ĥ is still the same as that from H , albeit the projections
(Φij ,Ψij) and (Φ̂ij , Ψ̂ij) extracted are, in general, different.

IV. COMPUTATIONAL RESULTS

In the following, we will show the comparison of RPOD
with Balanced POD for a linearized channel flow problem.

Consider the problem of the fluid flow in a plane channel.
We focus on the linearized case when there are small pertur-
bations about a steady laminar flow. The flow is perturbed
by body force B(y, z)f(t), which means the force is acting
in the wall-normal direction. There is no-slip boundary

condition at the walls y = ±1 and the flow is assumed to
be periodic in the x and z direction. Assume there is no
variations in the x direction, then the linearized equation of
the wall-normal velocity v and the wall-normal vorticity η
are given by:

∂v

∂t
=

1

R
∇2v +Bf,

∂η

∂t
=

1

R
∇2η − U ′ ∂v

∂z
, (24)

where R = 100 is the Reynolds number and U(y) = 1− y2

is the steady state velocity. The domain z ∈ [0, 2π]. We
discretize the system using the finite difference method,
where both the y direction and z direction are discretized
into 21 nodes. Thus, the size of the system is 882 × 882.
There are 2 constant body forces on y = 0, and the
measurements are taken on all the nodes on boundaries.
For BPOD, we use 80 measurements on the boundaries,
and take 1000 snapshots from t ∈ [0, 1000s] for the primal
simulation, 50 snapshots from t ∈ [0, 500s] for the adjoint
simulation, which leads to a 8000 × 2000 SVD problem.
For RPOD, we randomly choose 50 measurements from the
80 measurements on the boundaries, take 200 snapshots from
t ∈ [0, 200s] for the primal simulation, and take 20 snapshots
from t ∈ [0, 200s] for the adjoint simulation. Thus, we need
to solve a 2000× 400 SVD problem for RPOD. The actual
velocity and vorticity at t = 1000s are shown in Fig. 1.

In Fig. 2, we compare the velocity modes of the system
using RPOD with the actual velocity modes. The comparison
of the vorticity modes are omitted here due to the page limit.

Here, we should note that the sign and the modulus of the
ROM velocity modes are not the same as the actual modes,
however, if needed, we can rescale the ROM modes to make
them match. For both methods, we extract 40 modes, the
first 30 extracted eigenvalues are compared in Fig. 3.

The comparison of the state errors and output errors are
shown in Fig. 4. To test the ROM, we use 20 different
white noise forcings and take the average output/state error
over these 20 simulation. We can see that the eigenvalues
extracted by RPOD and BPOD are almost the same. In this
simulation, we notice that at first, the state error and output
error using BPOD are slightly better than using RPOD, but
after some time, the errors are almost the same. The output
errors using both methods are less than 0.1%, and the state
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Fig. 1. Actual velocity and vorticity of the channel flow problem
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Fig. 2. Comparison between ROM and actual velocity modes
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Fig. 3. Comparison of eigenvalues extract by RPOD and BPOD for channel
flow problem

errors using both methods are around 5%. Thus, we can
conclude that RPOD is comparable to BPOD but requires
far less computation.

Moreover, sometimes, it may be impossible to solve the
SVD problem resulting from BPOD. For example, in the
channel flow problem, if we use the full state measurements
(882 measurements) and we take 20 snapshots for the adjoint
simulation, there are 80 sources on the bounday and we
take 1000 snapshots for the primal simulation, then we
need to solve a 17640 × 80000 SVD problem for BPOD,
which is not solvable in Matlab. For RPOD, we randomly
choose 50 sources on the boundaries, and randomly choose
400 measurements. If we take 100 snapshots for the primal
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Fig. 5. Simulation results using RPOD for channel flow problem

simulation, and 20 snapshots for the adjoint simulation, then
it leads to a 8000×5000 SVD problem, which is a relatively
small problem. We compare the first 70 extracted eigenvalues
with the actual eigenvalues and the output errors in Fig.
5. Thus, in problems where there are a large numbers of
actuators/sensors, the savings can be very significant. In
terms of an experiment, this observation may have added
implications as it implies that we can reduce the scale
of the instrumentation required to get the data required to
form an ROM by orders of magnitude without losing much
information that can be extracted from the resulting data,
which can result in significant cost savings.

V. CONCLUSION

In this paper, we have introduced a randomized POD
(RPOD) procedure for the extraction of ROMs for large scale
systems such as those governed by PDEs. The RPOD proce-
dure extracts almost the same information from a randomly
chosen sub-Hankel matrix extracted from the full order
Hankel matrix as is obtained by the BPOD procedure from
the full order Hankel matrix without sacrificing too much
accuracy. This leads to an orders of magnitude reduction in
the computation required for constructing ROMs for large
scale systems with a large number of inputs/ outputs over
the BPOD procedure. The computational results shown for
a set of moderately high dimensional advection diffusion
equations seem to reach the same conclusion. The next step
in this process would require us to consider more realistic,
high dimensional, and nonlinear PDEs arising in problems
such as fluid flows and aeroelasticity.

APPENDIX
PROOF OF PROPOSITION 1

Here, we establish bounds on the eigenfunction recon-
struction errors using the cross correlation matrix Y ′X .

We denote X = VSαS + δαDVD, and Y = USβS +
UDδβD, where US ,VS are the active left and right eigenvec-
tors corresponding to the same eigenvalues ΛS in the snap-
shots, and UD, VD are rest of the left and right eigenvectors.
Under assumption 1, ‖δαD‖ ∝ O(ε), and ‖δβD‖ ∝ O(ε),
where ε is sufficient small. First, we need to solve the SVD
problem of Y ′X .

Y ′X = (β′SU
′
S + δβ′DU

′
D)(VSαS + VDδαD)

= β′SαS + δβ′DδαD = β′SαS + ∆1, (25)



where ‖∆1‖ ∝ O(ε2), and thus ‖Y ′X − β′SαS‖ ≤ c1ε
2. If

(Up,Σp, Vp) are the left singular vectors, non-zero singular
values and right singular vectors of Y ′X , i.e.

Y ′X = UpΣpV
′
p ,

(β′SU
′
S)(VSαS) = β′SαS = ÛpΣ̂pV̂

′
p . (26)

where (Ûp, Σ̂p, V̂p) are the left singular vectors, non-zeros
singular values, and right singular vectors of β′SαS . From the
eigenvalue perturbation theory, ‖Vp − V̂p‖ ∝ O(ε2), ‖Up −
Ûp‖ ∝ O(ε2), ‖Σp − Σ̂p‖ ∝ O(ε2). Thus,

VpΣ
−1/2
p = V̂pΣ̂

−1/2
p + ∆2,

UpΣ
−1/2
p = ÛpΣ̂

−1/2
p + ∆3, (27)

where ‖∆2‖, ‖∆3‖ ∝ O(ε2). The POD bases are:

Tr = XVpΣ
−1/2
p , T ′l = Σ−1/2

p U ′pY
′. (28)

We have:

Y ′AX = (β′SU
′
S + δβ′DU

′
D)A(VSαS + VDδαD)

= β′SΛSαS + δβ′DΛDδαD︸ ︷︷ ︸
∆4

= β′SΛSαS + ∆4, (29)

where ‖∆4‖ ∝ O(ε2). The reduced order system using this
set of POD basis is:

Ã = T ′lATr = (Σ−1/2
p U ′p)(Y

′AX)(VpΣ
−1/2
p ). (30)

Substitute (27) and (29) into (30), we have:

Ã = T ′lATr

= (Σ̂−1/2
p Û ′p + ∆3)(β′SΛSαS + ∆4)(V̂pΣ̂

−1/2
p + ∆2)

= (Σ̂−1/2
p Û ′pβ

′
S)︸ ︷︷ ︸

P

ΛS (αS V̂pΣ̂
−1/2
p )︸ ︷︷ ︸

P̂

+∆5 = Â+ ∆5, (31)

where ‖∆5‖ ∝ O(ε2). First, we need to show PP̂ = I .

PP̂ = Σ̂−1/2
p Û ′pÛp︸ ︷︷ ︸

I

Σ̂p V̂
′
p V̂p︸ ︷︷ ︸
I

Σ̂−1/2
p = Σ̂−1/2

p Σ̂pΣ̂
−1/2
p = I. (32)

Since P and P̂ are square matrices, thus P̂ = P−1, Â =
PΛSP

−1. From (31),

Ã = P̃ΛijP̃
−1 = Â+ ∆5. (33)

Using the eigenvalue perturbation theory, P̃ = P + ∆6,
where ‖∆6‖ ∝ O(ε2), ‖Λij − ΛS‖ ∝ O(ε2). where ΛS
are the eigenvalues of the system matrix A. Now, we want
to bound the errors between the right and left eigenvectors
corresponding to the same eigenvalues.

Ψij = TrP̃ = XVpΣ
−1/2
p (P + ∆6)

= (VSαS + VDδαD)(V̂pΣ̂
−1/2
p + ∆2)(P + ∆6)

= (VSαS + VDδαD)(V̂pΣ̂
−1
p Û ′pβ

′
S + ∆7)

= VS αS V̂pΣ̂
−1
p Û ′pβ

′
S︸ ︷︷ ︸

P−1P

+VDδαDV̂pΣ̂
−1
p Û ′pβ

′
S + ∆8

= VS + VDδαDV̂pΣ̂
−1
p Û ′pβ

′
S + ∆8, (34)

where, ‖∆7‖, ‖∆8‖ ∝ O(ε2).
Since ‖VDδαDV̂pΣ̂−1

p Û ′pβ
′
S‖ ∝ O(ε), then ‖Ψij −VS‖ ∝

O(ε). Similarly, if we denote Φ′ij = P̃−1Tl, then ‖Φij −
US‖ ∝ O(ε).
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