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A RANDOMIZED SAMPLING BASED APPROACH TO
MULTI-OBJECT TRACKING WITH COMPARISON TO HOMHT

W. Faber∗, S. Chakravorty†, and Islam I. Hussein‡

In this paper, we present a comparison between our recently published random-
ized version of the finite set statistics (FISST) Bayesian recursions for multi-
object tracking with the commonly known Hypothesis Oriented Multiple Hy-
pothesis Tracking (HOMHT) method. We start by revisiting our hypothesis level
derivation of the FISST equations in order to appropriately introduce our random-
ized method, termed randomized FISST (RFISST). In this randomized method,
we forgo the burden of having to exhaustively generate all possible data associ-
ation hypotheses by implementing a Markov Chain Monte Carlo (MCMC) ap-
proach. This allows us to keep the problem computationally tractable. We illus-
trate the comparison by applying both methods to a space situational awareness
(SSA) problem and show that as the number of objects and/or measurement re-
turns increases, as does the computational burden. We then show that the RFISST
methodology allows for accurate tracking information far beyond the limitations
of HOMHT.

INTRODUCTION

In this paper, we present a randomized approach to approximate the full Bayesian recursions in-
volved in solving the Finite Set Statistics (FISST) based approach to the problem of multi-object
tracking and detection, in particular, to the problem of SSA. We show that the FISST recursions
can essentially be considered as a discrete state space Bayesian filtering problem on “Hypothesis
Space” with the only input from the continuous problem coming in terms of the likelihood values
of the different hypotheses. The number of objects is implicit in this technique and can be a random
variable. The ”Hypothesis Space” perspective allows us to develop a randomized version of the
FISST recursions where we sample the highly likely children hypotheses using a Markov Chain
Monte Carlo (MCMC) technique thereby allowing us to keep the total number of possible hypothe-
ses under control, and thus, allows for a computationally tractable implementation of the FISST
equations, which otherwise grows at an exponential rate, and thus, can quickly lead to the problem
becoming intractable. The method is applied to SSA tracking and detection problems and compared
to the well-known method HOMHT.

In the last 20 years, the theory of FISST-based multi-object detection and tracking has been
developed based on the mathematical theory of finite set statistics [1, 2]. The greatest challenge in
implementing FISST in real-time, which is critical to any viable SSA solution, is computational
burden. The first-moment approximation of FISST is known as the Probability Hypothesis Density
(PHD) approach [2, 3]. The PHD has been proposed as a computationally tractable approach to
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applying FISST. The PHD filter essentially finds the density of the probability of an object being
at a given location, and thus, can provide information about the number of objects (integral of the
PHD over the region of interest) and likely location of the objects (the peaks of the PHD). The
PHD can further employ a Gaussian Mixture (GM) or a particle filter approximation to reduce
the computational burden by removing the need to discretize the state space. This comes at the
expense of approximating the general FISST pdf with its first-moments [3–6]. In previous work, a
GM approximation was applied to the original full propagation and update equations derived from
FISST [7, 8].

In this paper, in contrast, we introduce a hypothesis level derivation of the FISST equations that
shows how the full FISST recursions can be implemented. In order to ensure the computational
tractability of the resulting equations, we introduce an MCMC based hypothesis selection scheme
resulting in the Randomized FISST (RFISST) approach that is able to scale the FISST recursions to
large scale problems.

There are also non-FISST based approaches to multi-hypothesis tracking (MHT) such as the
Hypothesis Oriented MHT (HOMHT) [9–12], and the track oriented MHT (TOMHT) techniques
[13]. The MHT techniques can be divided into single-scan and multi-scan methods depending
on whether the method uses data from previous times to distinguish the tracks [10, 12, 14]. The
single-scan (recursive) methods such as joint probabilistic data association (JPDA) [12,14] typically
make the assumption that the tracks are independent which is not necessarily true. The multi-scan
methods such as TOMHT [12, 13] are not recursive. The primary challenge in these methods is
the management of the various different hypotheses related to the tracks which TOMHT does using
an efficient tree structure, and the MCMCDA, and other related tracking techniques [15–17], do
through the use of MCMC methods in sampling the data associations. We also use MCMC to
sample children hypotheses given the parent hypothesis, however, our approach is a truly recursive
technique which does not assume track independence as the above mentioned single scan methods.
We essentially do an efficient management of the growing number of hypotheses at every generation
through the judicious use of MCMC.

The rest of the paper is organized as follows. In Section II, we introduce the hypothesis level
derivation of the FISST equations. In Section III, we introduce the MCMC based randomized
hypothesis selection technique that results in the RFISST algorithm. In Section IV, we show an ap-
plication of the RFISST technique on SSA examples and compare the results to the HOMHT tech-
nique. A related paper, [18], was presented at the International Conference of Information Fusion.
This paper extends that paper with a new MCMC data association scheme and a full comparison of
the methodology with the HOMHT technique. For the sake of the paper being self-contained, the
next two sections detailing the hypothesis level derivation of the FISST equations are reproduced
from reference [18].

A HYPOTHESIS BASED DERIVATION OF THE FISST EQUATIONS

In this section, we shall frame the multi-object tracking equations at the discrete hypothesis level
which then shows clearly as to how the full FISST recursions may be implemented. The derivation
below assumes that the number of measurements is always less than the number of objects, which
is typically the case in the SSA problem. We never explicitly account for the number of objects,
since given a hypothesis, the number of objects and their probability density functions (pdf) are
fixed, which allows us to derive the results without having to consider the random finite set (RFS)
theory underlying FISST. Albeit the equations derived are not as general as the FISST equations, in

2



particular, the birth and death models employed here are quite simple, we believe that the level of
generality is sufficient for the SSA problem that is our application.

Framing FISST at the Hypothesis Level

We consider first the case when the number of objects is fixed, which we shall then generalize to
the case when the number of objects is variable, i.e, there is birth and death in the object population.
Assume that the number of objects is M , and each object state resides in <N . Consider some
time instant t − 1, and the data available for the multi-object tracking problem till the current time
F t−1. Let Hi denote the ith hypothesis at time t− 1, and let {X} denote the underlying continuous
state. For instance, given the N− object hypothesis, the underlying state space would be {X} =
{X1, X2, · · ·XM} where Xj denotes the state of the jth object under hypothesis Hi and resides in
<N . Let p({X}, i/F t−1) denote the joint distribution of the state-hypothesis pair after time t − 1.
Using the rule of conditional probability:

p({X}, i/F t−1) = p({X}/i,F t−1)︸ ︷︷ ︸
MT-pdf underlyingHi

p(i/F t−1)︸ ︷︷ ︸
wi=prob. ofHi

, (1)

where MT-pdf is the multi-object pdf underlying a hypothesis. Given the hypothesis, the MT-pdf is
a product of independent individual pdfs underlying the objects, i.e.,

p({X}/i,F t−1) =

M∏
k=1

pk(xk), (2)

where pk(.) is the pdf of the kth object. Next, we consider the prediction step between measure-
ments. Each hypothesis Hi splits into AM children hypotheses, and let us denote the jth child
hypothesis as Hij . The children hypotheses correspond to the different data associations possible
given a measurement of size m, i.e., m returns, and

AM =

min(m,M)∑
n=0

(
M

n

)(
m

n

)
n!. (3)

We want to note here that this is a pseudo-prediction step since we assume that we know the size
of the return m. However, it allows us to fit the MT-tracking method nicely into a typical filtering
framework. Using the rules of total and conditional probability, it follows that the predicted multi-
object pdf in terms of the children hypotheses is:

p−({X}, (i, j)/F t−1) =∫
p({X}, (i, j)/{X ′}, i)p({X ′}, i/F t−1)d{X ′} =∫

p({X}/(i, j), {X ′})p({X ′}/i,F t−1)d{X ′}︸ ︷︷ ︸
p−({X}/(i,j),Ft−1)

p(j/i)︸ ︷︷ ︸
pij

p(i/F t−1)︸ ︷︷ ︸
wi

, (4)

where p−(., (i, j)/F t−1) is the joint distribution of the state and hypothesis pairs before the mea-
surement at time t. We have used the fact that p((i, j)/{X ′}, i) = p(j/i) = pij , and pij is the
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transition probability of going from the parent i to the child j and wi is the probability of the parent
hypothesis Hi. Let pk(xk/x′k) denote the transition density function of the kth object. Expanding
the predicted MT-pdf, we obtain:

p−({X}/(i, j),F t−1) ≡∫
p({X}/(i, j), {X ′})p({X ′}/(i),F t−1)d{X ′}, (5)

where

p({X}/(i, j), {X ′}) ≡
M∏
k=1

pk(xk/x
′
k)∫

p({X}/(i, j), {X ′})p({X ′}/(i),F t−1)d{X ′}

≡
∫ ∏

k

pk(xk/x
′
k)
∏
k′

pk′(x
′
k)dx

′
1 · · · dx′M

=
∏
k

∫
pk(xk/x

′
k)pk(x

′
k)dx

′
k =

∏
k

p−k (xk), (6)

where p−k (xk) is the prediction of the kth object pdf underlying the hypothesis Hij .

Remark 1 Eq. 4 has a particularly nice hybrid structure: note that the first factor is the multi-
object continuous pdf underlying the child hypothesis Hij , while the second factor pijwi is the
predicted weight of the hypothesis Hij . For the no birth and death case, all pij are equal to 1

AM
,

where recall thatAM is the total number of data associations possible (Eq. 3). Note that the MT-pdf
underlying Hij is simply the product of the predicted individual object pdf, and in the case of no
birth and death, it is the same for all children hypothesis Hij .

Given the prediction step above, let us consider the update step given the measurements {Zt} =
{z1,t, · · · zm,t}, where there are m measurement returns. We would like to update the weights
of each of the multi-object hypotheses to obtain p({X}, (i, j)/{Zt},F t−1) by incorporating the
measurement {Zt}. Using Bayes rule:

p({X}, (i, j)/{Zt},F t−1) =

ηp({Zt}/{X}, (i, j))p−({X}, (i, j)/F t−1),

where

η = (7)∑
i′,j′

∫
p({Zt}/{X ′}, (i′, j′))p−({X ′}, (i′, j′)/F t−1)d{X ′},

where the MT-likelihood function p({Zt}/{X}, (i, j)) and the Bayes normalizing factor
∫
p({Zt}/{X ′}, (i′, j′))p−({X ′}, (i′, j′)/F t−1)d{X ′}

are defined in Eqs. 11 and 13 below. Using the prediction equation 4, it follows that:

p({X}, (i, j)/{Zt},F t−1)︸ ︷︷ ︸
p({X},(i,j)/Ft)

=

ηp({Zt}/X, (i, j))p−({X}/(i, j),F t−1)pijwi. (8)
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We may then factor the above equation as follows:

p({X}, (i, j)/F t) =

p({Zt}/{X}, (i, j))p−({X}/(i, j),F t−1)

lij

lij

wij︷ ︸︸ ︷
pijwi∑

i′,j′ li′,j′ pi′j′wi′︸ ︷︷ ︸
wi′j′

, (9)

where

lij =

∫
p({Zt}/{X ′}, (i, j))p−({X ′}/(i, j),F t−1)d{X ′}. (10)

Note that lij is likelihood of the data {Zt} given the multi-object pdf underlying hypothesis Hij ,
and the particular data association that is encoded in the hypothesis.

Remark 2 It behooves us to understand the updated pdf underlying the child hypothesis Hij , the
first factor on the right hand side of Eq. 9. Let pD denote the probability of detection of a object
given that it is in the field of view (FOV) of the monitoring sensor(s). Let pF (z) denote the proba-
bility that the observation z arises from a clutter source. Let Hi denote an M−object hypothesis
with object states {X} = {X1, · · ·XM} governed by the pdfs p1(x1), · · · pM (xM ). Let the child
hypothesisHij correspond to the following data association hypothesis: z1 → Xj1 , · · · zm → Xjm .
Then, we define the MT-likelihood function:

p({Zt}/{X}, (i, j)) ≡
p({z1 · · · zm}/{X1 = x1, · · ·XM = xM}, (i, j))

= [
m∏
k=1

pDp(zk/Xjk = xjk)](1− pD)M−m, (11)

where p(zk/Xjk = xjk) is simply the single object observation likelihood function for the sensor.
Thus,

p({Zt}/{X}, (i, j))p−({X}/(i, j),F t−1) =

[
m∏
k=1

pDp(zk/Xjk = xjk)p−jk(xjk)][
∏
l 6=jk

(1− pD)p−l (xl)], (12)

where l 6= jk denotes all objects Xl that are not associated with a measurement under hypothesis
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Hij . Further, defining the MT-Bayes factor as:

lij =

∫
p({Zt}/{X ′}, (i, j))p−({X ′}/(i, j),F t−1)d{X ′}

≡
∫

[
m∏
k=1

pDp(zk/Xjk = x′jk)p−jk(x′jk)]×

[
∏
l 6=jk

(1− pD)p−l (x′l)]dx
′
1..dx

′
M

= [
m∏
k=1

(pD

∫
p(zk/Xjj = x′jk)p−jk(x′jk)dx′jk)]×

[
∏
l 6=jk

(1− pD)

∫
p−l (x′l)dx

′
l]

= (1− pD)M−m
m∏
k=1

pDp(zk/Xjk), (13)

where p(zk/Xjk) ≡
∫
p(zk/Xjk = x′jk)p−jk(x′jk)dx′jk . Hence,

p({Zt}/{X}, (i, j))p−({X}/(i, j),F t−1)∫
p({Zt}/{X ′}, (i, j))p−({X ′}/(i, j),F t−1)d{X ′}

=

∏m
k=1 pDp(zk/Xjk = xjk)p−jk(xjk)∏m

k=1 pD
∫
p(zk/Xjk = x′jk)p−jk(x′jk)dx′jk

×

(1− pD)M−m
∏
l 6=jk p

−
l (xl)

(1− pD)M−m

=

m∏
k=1

pjk(xjk/zk)×
∏
l 6=jk

p−l (xl), (14)

where pjk(xjk/zk) denotes the updated object pdf ofXjk using the observation zk and the predicted
prior pdf p−jk(xjk), and p−l (xl) is the predicted prior pdf ofXl whenever l 6= jk, i.e., the pdf of object
Xl is not updated with any measurement. In the above, we have assumed that all the measurements
are assigned to objects, however, some of the measurements can also be assigned to clutter, in which
case, the object pdfs are updated exactly as above, i.e., all objects’ predicted prior pdfs associated
with data are updated while the unassociated objects’ predicted priors are not updated, except now
the likelihoods lijof the children hypothesis Hij are given by:

lij = (1− pD)M−m
′
m∏
i=1

p(zi/Xji), (15)

where

p(zi/Xji) =

{
pD
∫
p(zi/x)pji(x)dx if Xji ∈ T

pF (zi) if Xji ∈ C
(16)

where T is the set of all objects and C is clutter, m′ is the number of objects associated to measure-
ments, and the above equation implies that the measurement zi was associated to clutter if Xji ∈ C.
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Note that in the above equation the FOV is assumed to cover the entire set of objects, if it does not
do so, the factor (1− pD)M−m is replaced by (1− pD)Mt−m where Mt is the number of objects in
the FOV of the sensor.

Remark 3 The recursive equation 9 above has a particularly nice factored hybrid form. The first
factor is just a continuous multi-object pdf that is obtained by updating the predicted multi-object
pdf obtained by associating the measurements in {Zt} to objects according to the data association
underlying Hij . The second factor corresponds to the update of the discrete hypothesis weights.

Remark 4 Given that there is an efficient way to predict/ update the multi-object pdfs underlying
the different hypotheses, Eq. 9 actually shows that the FISST recursions may essentially be treated
as a purely discrete problem living in the “Hypothesis level” space. The ”hypothesis level” weights
are updated based on the likelihoods lij which is determined by the continuous pdf underlying Hij .
Also, the continuous pdf prediction and updates are independent of the hypothesis level predic-
tion and updates, i.e, the hypothesis probabilities do no affect the multi-object pdfs underlying the
hypotheses.

Thus, given that the likelihoods of different hypothesis lij arise from the underlying multi-object
pdf and the encoded data association in the hypothesesHij , the FISST updates can be written purely
at the hypothesis level as follows:

wij :=
lijwij∑

i′,j′ li′j′wi′j′
, (17)

where wij = pijwi. Thus, we can see that the FISST update has a particularly simple Bayesian
recursive form when viewed at the discrete hypothesis level, given that the multi-object pdfs un-
derlying the hypotheses Hij are tracked using some suitable method. We can summarize the above
development of the Bayesian recursion for multi-object tracking as follows:

Proposition 1 Given anM−object hypothesisHi, and its children hypothesesHij , that correspond
to the data associations {zi → Xji}, the joint MT-density, hypothesis weight update equation is:

p({X}, (i, j)/F t) = p({X}/(i, j),F t) wijlij∑
i′,j′ wi′j′ li′j′

,

where wij = pijwi, lij is given by Eq. 15, and the MT-pdf underlying Hij:

p({X}/(i, j),F t) =
m∏
k=1

pjk(xjk/zk)
∏
l 6=jk

p−l (xl),

where pjk(Xjk/zjk) denotes the predicted prior of object Xjk , p−jk(xk), updated by the observation
zjk , and p−l (xl) is the predicted prior for all objects Xl that are not associated.

We may renumber our hypothesis Hij into a parent of the next generation of hypothesis through
a suitable map F ((i, j)) that maps every pair (i, j) into a unique positive integer i′, and start the
recursive procedure again. However, the trouble is that the number of hypotheses grows combina-
torially at every time step since at every step the number of hypotheses grow by the factor AM (Eq.
3), and thus, the above recursions can quickly get intractable.
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Incorporating Birth and Death in Hypothesis level FISST

The development thus far in this section has assumed (implicitly) that there are a fixed and known
number of objects. However, this is not necessarily true since new objects can arrive while old
objects can die. Thus, we have to incorporate the possibility of the birth and death of objects. In the
following, we show that this can be done in quite a straightforward fashion using Eqs. 4, 9 and 17.

Let α denote the birth probability of a new object being spawned and β denote the probability
that an object dies in between two measurements. We will assume that α2, β2 ≈ 0. This assumption
implies that exactly one birth or one death is possible in between measurement updates. Consider
the time instant t, and consider an M -object hypothesis at time t, Hi. Depending on the time t, let
us assume that there can be M b

t birth hypotheses and Md
t death hypothesis corresponding to one

of M b
t objects being spawned or one of Md

t objects dying. In particular, for the SSA problem, we
can divide the FOV of the sensor into M b

t parts and the births correspond to a new object being
spawned in one of these FOV parts. The death hypotheses correspond to one of the Md

t objects
expected to be in the FOV dying. Hence, a child hypothesis Hij of the parent Hi can be an M + 1
object hypothesis with probability α in exactly M b

t different ways. The child Hij could have M −1
objects with probability β each in Md

t different ways corresponding to the Md
t different objects

dying. Thus, the child Hij could have M objects with probability (1 −M b
t α −Md

t β) in exactly
one way (the no birth/ death case). Please see Fig. 1 for an illustration of the process.

Further, the child hypothesis Hij can then split into further children Hijk where the total number
of children is AM , AM+1 or AM−1 depending on the number of objects underlying the hypothesis
Hij , and corresponding to the various different data associations possible given the measurement
{Zt}. Note that the above process degenerates into the no birth and death case when α = β = 0.
Thus, we can see that the primary consequence of the birth and death process is the increase in the
total number of children hypotheses. However, the equations for the multi-object filtering (with a
little effort, due to the fact that the child hypotheses may have different number of objects than the
parent hypothesis thereby complicating the integration underlying the prediction step) can be shown
to remain unchanged. Recall Eq. 9, which is reproduced below for clarity:

p({X}, (i, j)/F t)

=
p({Zt}/{X}, (i, j))p−({X}/(i, j),F t−1)∫

p({Zt}/{X ′}, (i, j))p−({X ′}/(i, j),F t−1)d{X ′}︸ ︷︷ ︸
updated pdf underlyingHij

×

lij

wij︷ ︸︸ ︷
pijwi∑

i′,j′ li′,j′ pi′j′wi′︸ ︷︷ ︸
wi′j′

. (18)

The only difference from the no birth and death case is, given Hi is an M− object hypotheses,
the children hypotheses Hij can have M , M − 1 or M + 1 objects underlying them, and the
corresponding pij value is 1 −M b

t α −Md
t β, β or α respectively. It behooves us to look closer at

the prediction equations in the birth and death case as that is the source of difference from the no
birth and death case.

First, consider the case of a death hypothesis. Consider an M-object hypothesis, Hi, with under-
lying MT-pdf

∏
k pk(xk). Suppose without loss of generality that the M th object dies. Then, the
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transition density for the multi-object system is defined as:

p({X}/{X ′}, (i, j)) = [

M−1∏
k=1

pk(xk/x
′
k)]δ(φ/xM ), (19)

where δ(φ/xM ) denotes the fact that the M th object becomes the null object φ with probability
one. Thus, the predicted MT-transition density underlying Hij is:

p−({X}/(i, j),F t) =

=

∫
(

M−1∏
k=1

p(xk/x
′
k)p(x

′
k/i,F t))δ(φ/x′M )dx′1..dx

′
M

=
M−1∏
k=1

p−(xk/i,F t), (20)

i.e., the predicted MT-pdf is simply the predicted pdfs of all the objects that do not die.

Next, consider the case of a birth hypothesisHij where the birthed pdf has a distribution plb(xM+1).
The transition pdf is now

p({X}/{X ′}, (i, j)) = [
M∏
k=1

pk(xk/x
′
k)]pM+1(xM+1/φ), (21)

where pM+1(xM+1/φ) = plb(xM+1) denotes that the null object φ spawns an M + 1th object with
underlying pdf plb(xM ). It can be shown similar to above that the predicted distribution in this case
is:

p−({X}/(i, j),F t) = [

M∏
k=1

p−k (xk/i,F t)]plb(xM+1), (22)

i.e., the predicted distribution of all the objects with the addition of the birth pdf plb(xM+1).

Further, each of these hypothesis split into children Hijk based on the possible data associations:
if Hij is a birth hypothesis the the number of children is AM+1, if its a death hypothesis the number
of children is AM−1 and if it is no birth or death, the number of children is AM . In particular,
using the development outlined above ( where we have replaced the child notation Hijk by Hij for
simplicity), we can see that the transition probability pij of a child hypothesis Hij is:

pij =


α

AM+1
, if j ∈ BM+1

1−Mb
t α−Md

t β
AM

, if j ∈ BM
β

AM−1
, if j ∈ BM−1

(23)

whereBM refers to the set of allM object hypothesis, and recall thatAM =
∑min(m,M)

k

(
m
k

)(
M
k

)
k!.

The above development can be summarized as the following result:

Proposition 2 Given an M-object hypothesis Hi and its children Hij , the update equation for joint
MT-pdf-hypothesis density function is given by Eq. 18, where the only differences from the no birth
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Figure 1. A schematic of the splitting of the hypothesis due to birth/ death of objects
and data associations. Underlying each blob is a continuous MT-pdf.

or death case is that pij in the equations is different according as the hypothesis Hij birth, death or
a no birth or death hypothesis and is given by Eq. 23, and the predicted priors required in Eq. 18 is
calculated from Eq. 20 if Hij is a death hypothesis, Eq. 22 if it is a birth hypothesis and Eq 6 if it
is a no birth or death hypothesis.

A RANDOMIZED FISST (RFISST) TECHNIQUE

In the previous section, we have introduced the hypothesis level FISST equations and shown
that they are particularly easy to comprehend and implement. However, the number of children
hypothesis increase exponentially at every iteration and thus, can get computationally intractable
very quickly. However, it can also be seen that most children hypotheses are very unlikely and thus,
there is a need for intelligently sampling the children hypotheses such that only the highly likely
hypotheses remain. In the following, we propose an MCMC based sampling scheme that allows us
to choose the highly likely hypotheses.

MCMC based Intelligent Sampling of Children Hypothesis

Recall Eq. 17. It is practically plausible that most children j of hypothesisHi are highly unlikely,
i.e., lij ≈ 0 and thus, wij ≈ 0. Hence, there is a need to sample the children Hij of hypothesis Hi

such that only the highly likely hypotheses are sampled, i.e., lij >> 0.

Remark 5 Searching through the space of all possibly hypotheses quickly becomes intractable as
the number of objects and measurements increase, and as time increases.

Remark 6 We cannot sample the hypothesis naively either, for instance, according to a uniform
distribution since the highly likely hypothesis are very rare under the uniform distribution, and
thus, our probability of sampling a likely hypothesis is vanishingly small under a uniform sampling
distribution.

10



Thus, we have to resort to an intelligent sampling technique, in particular, an MCMC based ap-
proach.

Given a hypothesisHi, we want to sample its children according to the probabilities p̄ij = wijlij .
This can be done by generating an MCMC simulation where the sampling Markov chain, after
enough time has passed (the burn in period), will sample the children hypotheses according to the
probabilities p̄ij . A pseudo-code for setting up such an MCMC simulation is shown in Algorithm 1.
In the limit, as k →∞, the sequence {jk} generated by the MCMC procedure above would sample

Algorithm 1 MCMC Hypothesis Sampling
Generate child hypothesis j0, set k = 0.
Generate jk+1 = π(jk) where π(.) is a symmetric proposal distribution
If p̄ijk+1

> p̄ijk then jk := jk+1; k := k + 1;

else jk := jk+1 with probability proportional to
p̄ijk+1

p̄ijk
; k = k + 1.

the children hypotheses according to the probabilities p̄ij . Suppose that we generate C highest
likely distinct children hypothesis Hij using the MCMC procedure, then the FISST recursion Eq.
17 reduces to:

wij :=
lijwij∑

i′,j′ li′j′wi′j′
, (24)

where i′ and j′ now vary from 1 to C for every hypothesis Hi, instead of the combinatorial number
AM .

Given these M ∗ C hypotheses, i.e. C children of M parents, we can keep a fixed number H∞
at every generation by either sampling the H∞ highest weighted hypotheses among the children, or
randomly sampling H∞ hypotheses from all the children hypotheses according to the probabilities
wij .

Remark 7 The search for the highly likely hypotheses among a very (combinatorially) large num-
ber of options is a combinatorial search problem for which MCMC methods are particularly well
suited. Thus, it is only natural that we use MCMC to search through the children hypotheses.

Remark 8 The choice of the proposal distribution π(.) is key to the practical success of the ran-
domized sampling scheme. Thus, an intelligent proposal choice is required for reducing the search
space of the MCMC algorithm. We show such an intelligent choice for the proposal in the next
section.

Remark 9 The discrete hypothesis level update Eq. 17 is key to formulating the MCMC based
sampling scheme, and, hence, the computational efficiency of the RFISST algorithm.

Smart Sampling Markov Chain Monte Carlo

In this section, we reveal the process used to perform the MCMC sampling discussed in the
previous section. This process is performed at every scan to generate the highly likely children
hypotheses. Consider the following SSA scenario depicted in figure 2. In this scenario the belief
is that there are ten objects in the field of view. The sensor then detects five measurement returns.
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Figure 2. A possible SSA event where there exists ten objects in the field of view and
five measurement returns.

Typically when generating the hypotheses exhaustively one would create a matrix where each row
represents a particular hypothesis. The columns of the matrix represent the measurement returns
provided by the sensor. Each column entry represents the object that measurement is being asso-
ciated to in the particular hypothesis. The hypothesis matrix for our example scenario would look
like figure 3. However, if all objects and measurements within the field of view can be associated

Figure 3. An example of a typical Hypotheses Matrix used when exhaustively gener-
ating hypotheses. This particular matrix represents a portion of the hypothesis matrix
that would be generated for the scenario in figure 2.

then according to Eq. (3), with m = 5 and M = 10, the total number of possible hypotheses
would be AM = 63, 591. Thus, the hypothesis matrix actually has 63, 591 rows. This illustrates
the importance of a randomized approach. One can see that even with relatively low numbers of
objects and measurement returns exhaustively generating and maintaining the hypotheses will cause
a large computational burden. In our randomized approach we sample the rows of the hypothesis
matrix based on hypothesis probability. We do this by creating a matrix we call the data association
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matrix, figure 4. The data association matrix lists the objects as the columns and the measurement

Figure 4. The Data Association Matrix. Each row represents a particular measure-
ment return. Each column is a particular association. The elements represent the
likelihood of the corresponding association. Green boxes here show a visual represen-
tation of an example hypothesis.

return as the rows. The entries of the matrix contain the likelihood value of that particular measure-
ment to object assignment. The last column of the matrix is dedicated to clutter and contains the
likelihood that a particular measurement is associated to clutter. The dimensions of this matrix are
m × (M + 1) which is much smaller than the dimensions of the hypothesis matrix. This makes it
much more practical to explore using the MCMC technique.

Remark 10 The numbering of the objects and measurement returns in the data association matrix
is done strictly for organization and is redone at random each time step with no record of previous
numbering or labeling kept throughout scans.

Remark 11 Computing the data association matrix does not add any computational burden be-
cause the object to measurement likelihood is necessary in every tracking method.

We start the randomized technique by creating a row vector of lengthm containing a permutation
of column numbers. The green boxes in figure 4 are a visual representation of such a row vector
[ 5 4 2 1 7 ]. This row vector is used as our first hypothesis. We then take a step in the MCMC by
generating a proposed hypothesis. This is done by randomly choosing a row (Measurement) of the
data association matrix to change. We then randomly sample a column (object) to associate the
measurement to. If there is a conflicting assignment (i.e. a measurement is already assigned to that
object) then we automatically assign the conflicting measurement to clutter. We then compare the
proposed hypothesis to the current hypothesis in an MCMC fashion using a criteria which stems

from the Metropolis condition U [0, 1] < min(1,
P(i,j)k+1

P(i,j)k

) where P(i,j)k is the probability of the
hypothesis at step k. In words, if the proposed hypothesis has a higher probability then we keep it, if
not, we keep it with probability proportional to the ratio of the hypothesis probabilities. These steps
are then repeated until assumed stationary distribution. We then continue walking for a user defined
amount of steps and record all hypotheses sampled during these steps. The recorded hypotheses
represent the highly likely hypotheses.
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Figure 5. Visualization of a single MCMC step using the Data Association Ma-
trix. Green boxes represent the current hypothesis while blue boxes represent the
changes made for the proposed hypothesis. This particular example contains a con-
flicting assignment with measurement return two and shows how the association is
then changed to clutter.

COMPARISONS

In this section, we show a comparison between our randomized method RFISST and a well-
known tracking method called HOMHT. This comparison helps us illustrate two main points. The
first being that the accuracy of the estimation provided by the RFISST method is either equal to or
better than that of HOMHT but never worse. We will achieve this by showing side by side estima-
tions from both methods. The second point is seen when the number of hypotheses rapidly escalates
due to a large number of objects and/or a large number of measurement returns. Such occurrences
happen often in SSA and for many reasons, for example, when a debris field crosses the sensor’s
field of view. In these situations HOMHT fails because it is computationally impossible to gener-
ate such a large number of hypotheses. Due to the randomized scheme, the RFISST methodology
continues to perform in such scenarios.

The following figure, figure 6, shows an example of how the estimation data is to be presented.
The figure shows the actual positions of the objects labeled ”Current Position” and the estimated
positions from two separate hypotheses. If the estimated position for a particular object is within an
error bound then the object’s position will be represented by a green circle otherwise the object’s
position will be represented by a red star.
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Figure 6. An example of how estimation data is presented throughout the paper.
Green circles represent the correct estimates while poor estimates are represented by
red stars. All axes are in tens of thousands of kilometers

Comparison between RFISST and HOMHT: SSA Tracking

In order to compare both methods we simulated a fifteen-space object tracking and detection
problem. Each object was given a random planar orbit ranging between LEO and MEO with unique
orbital properties and zero-mean Gaussian process noise appropriate for SSA models. The objects
were simulated for long enough to where the object with the largest period would be able to complete
at least one orbit. Thus each object was allowed to pass completely through the field of view at least
one time. In this particular simulation we initialized all orbits to begin within the field of view.
In order to achieve an apples to apples comparison we used this simulation to test both methods.
The goal of each method would be to accurately track each object given only an imperfect initial
hypothesis containing the objects’ mean and covariance as well as measurement returns from a
single noisy sensor. State vectors for this problem consisted of the objects’ position along the x and
y axes as well as the magnitude of their velocity in the x and y directions. The single noisy sensor
was positioned at a fixed look direction of 15 degrees above the positive x-axis with a field of view
of 30 degrees. The sensor was used to measure objects’ position in the x - y plane with zero-mean
Gaussian measurement noise appropriate for the application. An Extended Kalman Filter (EKF)
was used in conjunction with each method to compute the underlying state and covariance updates.
That being said both methods will produce the same estimation given the correct hypotheses were
generated throughout the simulation.
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(a) Estimation at 10 percent completion

(b) Estimation at 50 percent completion

(c) Estimation at 75 percent completion

(d) Estimation at 100 percent completion

Figure 7. Side by side snapshots of the true positions (blue) and the estimated states
of the top hypothesis from both RFISST and HOMHT (green). Snapshots are taken
at ten, fifty, seventy-five, and one hundred percent simulation time. All axes in tens of
thousands of kilometers.
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Figures 7(a)-7(d) are snapshots of the simulation at ten, fifty, seventy-five, and one hundred per-
cent of the simulation time. Each snapshot shows the true positions of the objects and the position
estimations provided by both the HOMHT method and the RFISST method. These figures are pro-
vided to illustrate that the methods accurately track the objects. Furthermore, it shows that each
method maintained the correct hypothesis throughout the simulation. If either method was unable
to generate the correct hypothesis then the position estimations would be incorrect. These incorrect
position estimates would be seen as red stars in the snapshots.

Figure 8. The hypotheses generation time for both methods as shown on a log y-axis scale.

Comparison between RFISST and HOMHT: Computation Time

When tracking large numbers of objects the majority of the computational burden lies in the
hypothesis generation. HOMHT uses an exhaustive approach to generate the hypotheses. This ex-
haustive approach has its pros and cons. For example, generating all the hypotheses guarantees that
the hypothesis containing the correct data associations is sampled. Also this exhaustive approach
is very easy to implement. On the other hand, as the number of hypotheses grows so does the bur-
den placed on generating them. This can be seen as an increase of computation time. Even with
proper gating and pruning methods the number of hypotheses can be so large that generating them
would exceed the computers memory heap space making it computationally intractable. It is at this
point that we say the HOMHT method breaks. Using our randomized approach we never generate
all hypotheses, which allows us to handle scenarios with very high number of possible hypothe-
ses. However this method is more difficult to implement and must be tuned to guarantee that the
hypothesis containing the correct data association is sampled. Figure 8 shows a comparison of the
computation times for hypothesis generation of HOMHT and RFISST. The y-axis is the log of the
computation time in seconds while the x-axis is the log of the total number of possible hypothe-
ses being generated. HOMHT is represented by the blue line and resembles an exponential curve.
RFISST is represented by the green line and resembles a linear growth. It can be seen that at first for
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low numbers of possible hypotheses HOMHT performs faster. However, as the number of possible
hypotheses grows into the tens of thousands the RFISST method becomes more efficient. Further-
more, as the number of possible hypotheses grows into the hundred millions HOMHT struggles to
generate the hypotheses and eventually breaks. RFISST can generate the correct hypotheses even
as the number of possible hypotheses grows to the order of 1033. In each of these simulations the
RFISST MCMC methodology was able to sample the correct hypotheses using only 100, 000 steps
in the MCMC.

CONCLUSION

In this paper, we have presented a comparison between our randomized sampling based approach
to multi object tracking, RFISST, and the well-known method HOMHT. We introduced the RFISST
method by presenting a hypothesis based derivation of the FISST recursions. Next we showed that
by using MCMC we can sample the highly likely hypotheses without having to generate all possi-
ble hypotheses. We then showed that given the same underlying filter that HOMHT and RFISST
produce the same accuracy of tracking. Lastly, we showed that in situations of high numbers of
possible hypotheses that HOMHT breaks down while the RFISST method continues to perform.
Our current research interests includes making our randomized approach adaptive and applying it
to real data. This includes comparing with other methods and developing hybrid methods as well
as expanding to large scale GPU based implementation. We are also looking into the integration of
sensor tasking to minimize ambiguities and to maximize gain.
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