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Abstract— In this paper, we consider the model reduction
problem of large-scale systems, such as systems obtained
through the discretization of partial differential equations. We
propose a computationally optimal randomized proper orthog-
onal decomposition (RPOD∗) technique to obtain the reduced
order model by perturbing the primal and adjoint system
using Gaussian white noise. We show that the computations
required by the RPOD∗ algorithm is orders of magnitude
cheaper when compared to the balanced proper orthogonal
decomposition (BPOD) algorithm while the performance of the
RPOD∗ algorithm is better than BPOD. It is optimal in the
sense that a minimal number of snapshots is needed. We also
relate the RPOD∗ algorithm to random projection algorithms.
One numerical example is given to illustrate the procedure.

I. INTRODUCTION

In this paper, we are interested in the model reduction
of large scale systems, such as those governed by partial
differential equations (PDE). The dimension of the system
is large due to the discretization of the PDEs. For instance,
consider the atmospheric dispersion of air pollutants [1]. The
emission of the contaminants on the ground level is shown
in Fig. 1 with four point sources labeled from S1 to S4.

This is a three dimensional problem, and after discretizing
the PDE, the dimension of the system is 106. Therefore,
we are interested in constructing a reduced order model
(ROM) that can capture the input/output characteristics of the
large model such that this ROM can be used by a filtering
algorithm for updating the states of the field, such as the
Kalman filter. Also, the actuators and sensors could be placed
anywhere in this field, which leads to a model reduction
problem of a large-scale system with a large number of
inputs/outputs.

There are two popular contemporary model reduction
techniques that have been studied in the past few decades:
Principal component analysis (PCA) and randomization al-
gorithms. Among the PCA algorithms, Balanced POD [2],
[3] based on the balanced truncation [4] and eigensystem
realization algorithm (ERA) [5] have been widely used, and
BPOD is equivalent to ERA procedure [6]. BPOD algorithm
collects the impulse responses of the primal and adjoint
systems, and forms the Hankel matrix using the primal and
adjoint system simulations as opposed to the input-output
data as in ERA. For both BPOD and ERA, collecting the
primal and adjoint simulation datasets and solving the sin-
gular value decomposition (SVD) problem for the resulting
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Fig. 1. Air pollutant problem

Hankel matrix are computationally expensive for a large
scale system with a large number of inputs/outputs. To reduce
the computational cost of BPOD, [3] proposed an output
projection method while the algorithm still faces a high
computational burden when both the numbers of the inputs
and outputs are large, and the method cannot make any claim
regarding the closeness of the solution to one that is obtained
from the full Hankel matrix.

There are two major classes of randomization algorithms
used for low-rank matrix approximations: random sampling
algorithms and random projection algorithms. Denote ‖H‖F
as the Frobenius norm of H, and ‖H‖ as the spectral 2-
norm of H . For the random sampling algorithm, a rank
k approximation matrix Ĥ is constructed by choosing and
rescaling some columns of H according to certain sampling
probabilities [7], [8], so the error satisfies ‖H − Ĥ‖F ≤
(1 + ε)‖H −H(k)‖F , with high probability, where H(k) is a
best rank k approximation of H , ε is a specified tolerance.
In random projection method [9], the large matrix H is
projected on to an orthonormal basis Q such that the error
satisfies ‖H − QQ∗H‖ ≤ (1 + ε)‖H − H(k)‖ with high
probability. A Gaussian test matrix Ω is generated, and the
orthonormal basis Q is constructed by performing a QR
factorization of the matrix product HΩ. A direct application
of both algorithms would require the full Hankel matrix to
be constructed, which is prohibitively expensive.

We had introduced an RPOD algorithm in [10] that
randomly chooses a subset of the input/output trajectories.
A sub-Hankel matrix is constructed using the sampled tra-
jectories, and then forms a ROM in the usual BPOD fashion.
The Markov parameters of the ROM constructed using the
sub-Hankel matrix were shown to be close to the Markov
parameters of the full order system with high probability.
We proved that a lower bound exists for the number of
the input/output trajectories that need to be sampled. The
major problem associated with this algorithm is that different
choices of the sampling algorithms would lead to different



lower bounds, and the choice of a good sampling algorithm
other than the uniform distribution is unclear.

In this paper, we propose the RPOD∗ algorithm which is
closely related to random projection algorithms. In RPOD∗

algorithm, we perturb the primal and adjoint system with
Gaussian white noise. We prove that similar to the BPOD
algorithm, the controllable and observable modes are re-
tained in the ROM. The Markov parameters of the ROM
constructed using RPOD∗ are shown to be close to the
Markov parameters of the full order system, while the error is
bounded. The RPOD∗ algorithm can be viewed as applying
the random projection on the full Hankel matrix H twice
without constructing the full Hankel matrix H , i.e., Ĥ =
Ω′2Z

′XΩ1 = Ω′2HΩ1, where (.)′ denotes the transopse of
(.), Ω1,Ω2 are two random projection matrices, and Z,X are
the usual impulse response matrices of the adjoint and primal
system. However, we actually only generate ZΩ2 and XΩ1

which can be constructed from a single white noise perturbed
trajectory each of the adjoint and primal system respectively,
and thus, are orders of magnitude smaller in size than the
impulse responses Z and X . Thus, the computational cost to
generate the Hankel matrix and to solve the SVD problem
is saved by orders of magnitude. We believe that it is the
most computational efficient POD algorithm. In practice, the
RPOD∗ algorithm can be solved in real-time.

The rest of the paper is organized as follows. In Section II,
the problem is formulated, and in Section III, we review the
BPOD algorithm and illustrate in a simplified fashion how
to relate the BPOD ROM to the controllable and observable
modes of the system. The RPOD∗ algorithm is proposed in
Section IV, and the formal proofs and results are shown.
Also, we discuss the relationship between RPOD∗ algorithm
and the BPOD algorithm, and some implementation prob-
lems in this section. In Section V, we provide computational
results comparing the RPOD∗ with the BPOD for a three
dimensional atmospheric dispersion problem.

II. PROBLEM FORMULATION

Consider a stable linear input-output system:

xk = Axk−1 +Buk,

yk = Cxk, (1)

where xk ∈ <N , uk ∈ <p, yk ∈ <q are the states, inputs, and
outputs at discrete time instant tk respectively. The Markov
parameters of the system is defined as CAiB, i = 1, · · · .

The adjoint system is defined as:

zk = A′zk−1 + C ′vk, wk = B′zk, (2)

where zk ∈ <N , wk ∈ <p is the state and output of the
adjoint system at time tk respectively, vk ∈ <q .

Suppose A is diagonalizable, and let A = V ΛU ′, where Λ
are the eigenvalues, (V,U) are the corresponding right and
left eigenvectors.

A mode (Λi, Ui, Vi) is not controllable if U ′iB = 0, and
is not observable if CVi = 0, where (Λi, Vi, Ui) is the
ith eigenvalue-eigenvector pair. Therefore, we partition the

eigenvalues and eigenvectors (Λ, V, U) into four parts:

A =


V ′co
V ′cō
V ′c̄o
V ′c̄ō


′

Λco
Λcō

Λc̄o
Λc̄ō



U ′co
U ′cō
U ′c̄o
U ′c̄ō

 , (3)

where (Λco, Vco, Uco) are the controllable and observable
modes, (Λcō, Vcō, Ucō) are the controllable but not observable
modes, (Λc̄o, Vc̄o, Uc̄o) are the not controllable but observable
modes, and (Λc̄ō, Vc̄ō, Uc̄ō) are the not controllable and not
observable modes.

In this paper, we consider the model reduction problem for
large scale systems with a large number of inputs/outputs.
The goal is to construct a ROM such that the outputs of the
ROM yr are close to the outputs of the full order system
y, i.e., |y − yr| is bounded and all the controllable and
observable modes of system (A,B,C) are preserved in the
ROM.

III. BALANCED PROPER ORTHOGONAL DECOMPOSITION

In this section, first we briefly review the BPOD algo-
rithm. Then we give an informal proof to illustrate in a
simplified fashion how the transformation bases and the
Markov parameters of the ROM constructed using the BPOD
algorithm can be related to the controllable and observable
modes (Λco, Vco, Uco) of the system matrix A. The simplified
analysis is critical to understand the fundamentals of the
proposed RPOD∗ algorithm in Section IV.

A. Simplified Analysis of BPOD

The BPOD algorithm can be found in [3], [10], and is
briefly summarized here.

Step 1. Collect the impulse responses Xb, Zb of the primal
and adjoint system (1)-(2).

Step 2. Construct the Hankel matrix Hb and solve the SVD
problem of the Hankel matrix.

Hb = Z ′bXb =
(
Ub U1

)(Σb 0
0 0

)(
V ′b
V ′1

)
, (4)

where Σb contains the first l non-zero singular values, and
(Ub, Vb) are the corresponding left and right singular vectors.

Step 3. The BPOD bases are:

Tb = XbVbΣ
−1/2
b , Sb = Σ

−1/2
b U ′bZ

′
b, (5)

Step 4. The ROM is:

Ab = SbATb, Bb = SbB,Cb = CTb. (6)

In the following, we provide a simplified analysis of the
BPOD algorithm.

The snapshot ensemble Xb can be written as:

Xb =
(
At1−1B At2−1B · · · Atm−1B

)
, (7)

where t1, · · · , tm are the time steps we take the snapshots.
Assume A is diagonalizable, then from (3), we have:

Atk−1B =
(
Vco Vcō

)(Λco
Λcō

)tk−1(
U ′co
U ′cō

)
B. (8)



Thus, Xb can be written as:

Xb =
(
Vco Vcō

)(αbco
αbcō

)
, (9)

where αbco, α
b
cō the coefficient matrices. Similarly, Zb =(

Uco Uc̄o
)(βbco

βbc̄o

)
, where βbco, β

b
c̄o are coefficient matrices.

In the following, to simplify the analysis, we assume there
are only controllable and observable eigenvectors present in
the snapshot ensembles, i.e., αbcō = 0, βbc̄o = 0. Thus,

Xb = Vcoα
b
co, Zb = Ucoβ

b
co. (10)

Note that this assumption may not hold in practice, and is
relaxed in the formal proof of our main result, Proposition
1, in Section IV.

Suppose there are l controllable and observable modes,

Z ′bXb = (βbco)
′αbco = UbΣbV

′
b , (11)

where Σb ∈ <l×l are the l non-zero singular values and
(Ub, Vb) are the corresponding left and right singular vectors.

Consider the ROM:

Ab = SbATb = Σ
−1/2
b U ′b(Z

′
bAXb)VbΣ

−1/2
b

= Σ
−1/2
b U ′b(β

b
co)
′︸ ︷︷ ︸

Pb

Λco α
b
coVbΣ

−1/2
b︸ ︷︷ ︸

P̂b

. (12)

It can be proved that Λco are the eigenvalues of Ab, and
Pb are the eigenvectors, i.e.,

Λco = (P−1
b Sb)A(TbPb). (13)

The proof is shown in the technical report [11], and is
omitted here due to the page limit.

Let (Ψb,Φb) denote the new POD bases constructed by
projecting (Tb, Sb) onto the ROM eigenspace, then

Ψb = TbPb = XbVbΣ
−1/2
b Σ

−1/2
b U ′b(β

b
co)
′

= Vcoα
b
coVbΣ

−1
b U ′bβ

b
co = Vco, (14)

and similarly, Φb = P−1
b Sb = U ′co, i.e., under the approxi-

mation of exactly l controllable and observable modes being
present in the snapshots, the modal coordinates of the BPOD
ROM are precisely these l modes. Thus, the modal BPOD
ROM constructed using (Ψb,Φb) is:

Âb = Λco, B̂b = U ′coB, Ĉb = CVco. (15)

Remark 1: From the analysis above, we see that the modal
BPOD ROM consists of the controllable and observable
modes, and is invariant to the data Xb and Zb. Thus, we
make the following observation.

As along as the snapshot ensembles are:

X = Vcoα,Z = Ucoβ, (16)

the modal ROM consists of the controllable and observable
modes, and the ROM is given by (15).

Remark 2: Now, consider the impulse response snapshot

ensembles collected in the BPOD:

Xb = Vco︸︷︷︸
N×l

αbco︸︷︷︸
l×pm

, Zb = Uco︸︷︷︸
N×l

βbco︸︷︷︸
l×qn

, (17)

and the Hankel matrix: Hb = Z ′bXb ∈ <qn×pm.
There are two main parts to the computation:
1) The primal and adjoint snapshot ensembles Xb ∈
<N×pm, Zb ∈ <N×qn, and hence, the construction of
Hb takes time O(pqmnN).

2) The computational cost to solve the SVD of Hb is
O(min{p2m2qn, pmq2n2}).

However, Hb is only rank “l”, where l � N, pm, qn.
Therefore, if we can generate optimal snapshot ensembles,

X∗ = Vco α∗︸︷︷︸
l×l

, Z∗ = Uco β∗︸︷︷︸
l×l

, (18)

where l � pm, qn, then the BPOD result still holds for the
optimal snapshot ensembles X∗, Z∗ while solving the SVD
of H∗ = (Z∗)′X∗ would be reduced by orders of magnitude.

The snapshot ensembles X∗, Z∗ are considered to be
optimal because the rank of X∗, Z∗ is l, and only l snapshots
are needed to guarantee all the controllable and observable
modes Vco, Uco would be preserved in X∗, Z∗.

Furthermore, given that only l snapshots are needed, the
construction time of X∗, Z∗ is also reduced by orders of
magnitude from N×qn, pm to N×l since l� pm, qn. Bear-
ing this observation in mind, in the next section, we introduce
RPOD∗ algorithm which generates snapshot ensembles using
white noise perturbations, such that (18) holds.

IV. COMPUTATIONALLY OPTIMAL RANDOMIZED PROPER
ORTHOGONAL DECOMPOSITION (RPOD∗)

In this section, first, we give the reader the fundamental
insight into the derivation of the RPOD∗ algorithm. The
RPOD∗ algorithm is then formalized and treated rigorously
in Section IV-B. We discuss implementation issues of the al-
gorithm in Section IV-C, and compare the RPOD∗ algorithm
with random projection and BPOD in Section IV-D.

A. Derivation of the RPOD∗

Consider the system (1-2), since A is stable, there exists
a finite number tss, such that ‖Atss‖ ≈ 0.

A Gaussian matrix Ω1 ∈ <n×m is defined as:

Ω1 =

ω11 ω12 · · · ω1m

...
... · · ·

...
ωn1 ωn2 · · · ωnm

 (19)

where each element ωij of Ω1 is an independent, identically
distributed (i.i.d) variable with Gaussian distribution N(0, 1).
Suppose m ≤ n, in [9], it is shown that the columns of a
Gaussian matrix Ω1 are almost surely in general position,
so Ω1 has full column rank with probability one. The
primal snapshot ensemble collected in the BPOD are: Xb =
(B,AB, · · · , Atss−1B) ∈ <N×ptss , and we project Xb onto
a Gaussian matrix Ω1 ∈ <ptss×l:



X∗︸︷︷︸
N×l

=
(
X∗1 X∗2 · · · X∗l

)

=
(
B · · · Atss−1B

)︸ ︷︷ ︸
Xb=Vcoαb

co

 ω1,1 · · · ω1,l

... · · ·
...

ωtss,1 · · · ωtss,l


︸ ︷︷ ︸

Ω1

(20)

where ωi,j ∈ <p×1, i = 1, · · · , tss, j = 1, · · · l. Suppose that
the same assumption is made as in the heuristic analysis,
i.e., only “l” controllable and observable modes are present
in the snapshot ensemble Xb. The snapshot X∗j in X∗ is:

X∗j =

tss∑
i=1

Ai−1Bωi,j , j = 1, · · · , l. (21)

Since Ω1 is a Gaussian matrix, each element of Ω1 is
an i.i.d Gaussian variable with distribution N(0, 1), and
thus, ωi,j is a Gaussian random vector with zero mean and
covariance Ip×p. Therefore, X∗j is merely the snapshot of the
primal system with a unit intensity white noise perturbation
in each input channel, and given that we have waited long
enough such that ‖Atss‖ ≈ 0. Consequently,

X∗ = Vcoα
b
coΩ1 = Vco α∗︸︷︷︸

l×l

, (22)

and similarly, we may generate the adjoint snapshot en-
sembles Z∗ by projecting Zb onto the Gaussian matrix
Ω2 ∈ <qtss×l, Z∗ = Ucoβ

b
coΩ2 = Ucoβ

∗.

We know that Xb, Zb are linear combinations of Vco, Uco
respectively, thus, by projecting Xb, Zb onto the Gaussian
matrices, at least “l” of the state snapshots in X∗, Z∗

are still linearly independent, and X∗, Z∗ are still linear
combinations of Vco, Uco, since Ω1 and Ω2 are rank l with
probability 1. Therefore, due to Remark 2, the SVD of H∗ =
(Z∗)′X∗ would still result in obtaining the l controllable and
observable modes while drastically reducing the computation
in both computing the snapshots as well as the SVD.

From the analysis above, we see that the optimal snapshot
ensembles (18) can be generated by collecting the white
noise perturbation responses of system (1)-(2). We generate
the snapshots as follows.

We perturb the primal system (1) with unit intensity white
noise, i.e., uk ∼ N(0, I), and zero initial condition, then
collect the snapshots at discrete time 0 ≤ t1 < t2 < · · · <
tm, where tm ≥ tss, and ‖Atss‖ ≈ 0. The primal snapshot
ensemble is:

X∗ = [x(t1), x(t2), · · · , x(tm)]. (23)

The adjoint snapshot ensemble Z∗ is generated by col-
lecting the white noise perturbation responses of the adjoint
system through all the output channels in a similar fashion.
The details regarding how to choose the snapshots are dis-
cussed in the subsection IV-C. In the following, the RPOD∗

algorithm is proposed and the formal proof follows.

Algorithm 1 RPOD∗ Algorithm
1) Perturb the primal system (1) with white noise uk,

collect m snapshots at time step t1, t2, · · · , tm, and
denote the snapshot ensemble Xr as:

Xr =
(
x1 x2 · · · xm

)
. (24)

2) Perturb the adjoint system (2) with white noise vk,
collect n snapshots at time step t̂1, t̂2, · · · , t̂n, and
denote the adjoint snapshot ensemble Zr as:

Zr =
(
z1 z2 · · · zn

)
. (25)

3) Solve the SVD problem:

Z ′rXr =
(
Ur Uo

)(Σr 0
0 Σo

)(
V ′r
V ′o

)
, (26)

and truncate at σl, where l is the number of control-
lable and observable modes present in the snapshot
ensembles. Σr contains the first l non-zero singular
values σ1 ≥ σ2 ≥ · · · ,≥ σl > 0, (Ur, Vr) are the
corresponding right and left singular vectors.

4) Construct the POD bases:

Tr = XrVrΣ
−1/2
r , Sr = Σ−1/2

r U ′rZ
′
r. (27)

5) Construct the ROM Ã, find the eigenvalues Λr and
eigenvectors Pr of Ã.

Ã = SrATr = PrΛrP
−1
r , (28)

6) Construct new POD bases:

Φr = P−1
r Sr,Ψr = TrPr. (29)

7) The ROM is:

Ar = ΦrAΨr, Br = ΦrB,Cr = CΨr (30)

B. RPOD∗ Algorithm

The RPOD∗ algorithm is summarized in Algorithm 1.
Given a stable linear system, the following result holds.
Proposition 1: Denote (Ar, Br, Cr) as the ROM con-

structed using RPOD∗ following Algorithm 1. Suppose there
are l controllable and observable modes present in the
snapshot ensembles Xr, Zr collected using (24-25). Assume
that the contribution of the not controllable modes in Xr

and the contribution of the not observable modes in Zr are
relative small comparing to the other modes, i.e., U ′c̄oB =
εC1, U

′
c̄ōB = εC2, CVcō = εC3, CVc̄ō = εC4, where

C1, C2, C3, C4 are some coefficient matrices, and ε is a small
number. If we keep the first l non-zero singular values, then
‖CrAirBr − CAiB‖ ∝ O(ε), i = 1, · · · .

Proof: From the assumption made in the Proposition
1, the snapshot ensembles are expressed as follows.

Xr = Vcoαco + Vcōαcō + Vc̄oεαc̄o + Vc̄ōεαc̄ō, (31)
Zr = Ucoβco + Ucōεβcō + Uc̄oβc̄o + Uc̄ōεβc̄ō. (32)



Therefore,

Z ′rXr = β′coαco + εβ′cōαcō + β′c̄oεαc̄o + εβ′c̄ōεαc̄ō

= β′coαco + ε (β′cōαcō + β′c̄oαc̄o)︸ ︷︷ ︸
E1

+O(ε2),

= β′coαco + εE1 +O(ε2). (33)

From the perturbation theory [12]–[14], and following the
same proof in Section III-A, the ROM Markov parameters:

‖CrAirBr − CAiB‖ ∝ O(ε). (34)

The proof is shown in the technical report [11] and is omitted
here due to the page limit.

C. Implementation Issues

Here we discuss some implementation problems in the
RPOD∗ algorithm.

Snapshot selection From the analysis in Section IV-B,
we only need to collect m = l1 snapshots from the primal
simulations, where l1 is the number of the controllable
modes. However, l1 is not known a priori, thus, in practice,
we start with a random guess m << N , where N is
the dimension of the system, or we can choose m from
experience. For instance, in a fluid system with 106 degrees
of freedom, m is O(10) ∼ O(102). Similarly, we guess n,
and then we check the rank of Z ′rXr. If Z ′rXr has full rank,
i.e., rank (Z ′rXr) = min (m,n), then it is possible that we
did not take enough snapshots, and hence, we increase m,n,
until rank (Z ′rXr) < min (m,n).

We take m snapshots for the primal simulation, and we
assume that the snapshots are taken at ∆T, 2∆T · · · ,m∆T ,
WLOG. Here, ∆T is a small constant, and we require that
m∆T ≥ tss, where ‖Atss‖ ≈ 0. As ∆T increases, each
column in Ω1 is well separated, and hence, the ROM is
more accurate, while it takes longer time to generate the
snapshots. Thus, this is a trade-off between the accuracy and
the computational efficiency.

ROM size selection In Proposition 1, we assume that there
are l controllable and observable modes, and we keep exactly
l non-zero singular values. However, l is not known as a
priori. In practice, we decide l by trial and error. We start
with k = rank(Z ′rXr), and check the eigenvalues of Ã =
SrATr. We keep decreasing the value of k until Ã is stable.
From the development in [11], we know there is a region
[l, l + a], where a is a small number, such that most of the
eigenvalues of Ã remain the same for different value of k (l
controllable and observable modes with k − l perturbations
of the zero eigenvalues), then we stop, and pick the number
l as the number of non-zero eigenvalues of Ã.

D. Comparison with Random Projection and BPOD

From the analysis in Section IV-A, we see that the
snapshot ensembles collected in RPOD∗ can be written as:

Xr = XbΩ1, Zr = ZbΩ2, (35)

where Xb ∈ <N×ptss , Zb ∈ <N×qtss are the impulse
response snapshot ensembles that need to be collected in the

BPOD algorithm from time step (1, · · · , tss), and ‖Atss‖ ≈
0. Ω1 ∈ <ptss×m and Ω2 ∈ <qtss×n are Gaussian random
matrices. We have:

Hr︸︷︷︸
rank l

= Z ′rXr = Ω′2Z
′
bXbΩ1 = Ω′2 Hb︸︷︷︸

rank l

Ω1, (36)

There is a significant difference between the proposed
algorithm and a direct application of the random projection
algorithm on BPOD. A direct application of the random pro-
jection would require to generate the Hankel matrix Hb (and
Xb, Zb) first. However, in practice, the construction and the
storage of the Hankel matrix is computationally prohibitive
when N is large and the number of inputs/outputs is large.
Also, the bottleneck of the random projection algorithm is the
projection of Xb, Zb onto the Gaussian test matrices. In the
proposed algorithm, the snapshot ensembles are constructed
directly from the primal and adjoint simulations, and hence,
the computational cost to generate the Hankel matrix and to
project it onto the Gaussian test matrices is saved.

From the analysis in Section IV-C, we know that only m =
l1 and n = l2 snapshots needs to be collected in RPOD∗,
where l1, l2 are the number of controllable modes and the
number of observable modes respectively. For BPOD, the
snapshots are collected from time step (1, 2, · · · , tss), where
‖Atss‖ ≈ 0. In practice, m,n ∝ O(10) ∼ O(102), and
m,n � tss. As mentioned before, N is the dimension
of the system, p, q are the number of inputs and outputs
respectively, and WLOG, we assume p ≤ q, m ≤ n.

For constructing Z ′X matrix, the computational time us-
ing RPOD∗ is O(mnN), while using BPOD is O(pqt2ssN).
For solving the SVD problem, the computation time using
RPOD∗ is O(m2n), and using BPOD is O(p2qt3ss), where
m,n� tss. This is a significant saving when the dimension
of the system is large, or the number of inputs/ outputs is
moderate to large.

V. COMPUTATIONAL RESULTS

The three-dimensional advection-diffusion equation de-
scribing the contaminant transport in the atmosphere is:

∂c

∂t
+∇ · (c~u) = ∇ · (K( ~X)∇c) +Qδ( ~X − ~Xs), (37)

where c( ~X, t) denotes mass concentration at location ~X =
(x, y, z). ~Xs = (xs, ys, zs) is the location of the point source.
~u = (4m/s, 0, 0)is the wind velocity. Q denotes contam-
inant emitted rate, ∇ is the gradient operator. K( ~X) =
diag(Kx(x),Ky(x),Kz(x)) is a diagonal matrix whose en-
tries are the turbulent eddy diffusivities. In general K( ~X)
is a function of the downwind distance x only. Define
σ2
y(x) = 2

u

∫ x
0
Ky(η)dη, σ2

z(x) = 2
u

∫ x
0
Kz(η)dη, where

σy(x) = ayx(1 + byx)0.5, σz(x) = azx(1 + bzx)0.5, and
ay = 0.008, by = 0.00001, az = 0.006, bz = 0.00015.

The boundary conditions are:

c(0, y, z) = 0, c(∞, y, z) = 0, c(x,±∞, z) = 0,

c(x, y,∞) = 0,Kz
∂c

∂z
(x, y, 0) = 0. (38)
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Fig. 2. Atmospheric Dispersion Problem

The system is discretized using finite difference method,
and there are 100 × 100 × 10 grids which are equally
spaced. We take full field measurements (except the nodes
on x = 0,∞ and y = ±∞). In Fig. 2(a), we show the actual
concentration of the full field at time t = 200s with 10 point
sources. We take 200 snapshots from t ∈ [0, 300]s for both
primal and adjoint simulations, which leads to a 200× 200
SVD problem. We take the first 120 non-zero singular values
to construct the ROM. In Fig. 2(b), we compare the Markov
parameters of the ROM with the full order system.

It can be seen that the Markov parameters of the full
order system and the ROM constructed using RPOD∗ are
approximately the same. Since the system dimension is N =
105, constructing the ROM with the full field measurements
using BPOD is computationally impossible, and thus, for
comparison the RPOD∗ algorithm with BPOD algorithm, we
discretize the system into 10 × 10 × 10 grids, and take full
field measurements.

For RPOD∗, the system is perturbed by white noise with
distribution N(0, I10×10). We take 200 snapshots which
are equispaced from primal/adjoint simulations during time
t ∈ [0, 2000]s, where at time tss = 2000s, ‖Atss‖ ≈ 0, and
extract 180 modes. For BPOD, we collect 200 impulse re-
sponses snapshots which are equispaced from primal/adjoint
simulations respectively during time t ∈ [0, 2000]s, and exact
180 modes. In Fig. 3(a), we compare the Markov parameters
of the ROM constructed using RPOD∗ and BPOD with the
full order system. Also, we perturb the system with random
Gaussian noise, and compare the output relative errors in
Fig. 3(b).

For RPOD∗, the size of Z ′X is 200×200, the construction
of Z ′X takes time 2.58(s), and solving the SVD problem
takes 0.086(s). For BPOD, the size of Z ′X is 162000×2000,
the construction of Z ′X takes time 1146.7(s), and solving
SVD problem takes time 2357.8(s).

From the examples above, we can see that for a large
scale system with even a moderate number of inputs/outputs,
BPOD is computational prohibitive. For both examples
showed in this paper, the RPOD∗ algorithm outperforms the
BPOD algorithm by orders of magnitude in terms of the
accuracy as well as the computation time.

VI. CONCLUSION

In this paper, we have introduced a computationally
optimal randomized POD procedure for the extraction of
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Fig. 3. Comparison between BPOD and RPOD∗

ROMs for large scale systems such as those governed by
PDEs. The ROM is constructed by perturbing the primal
and adjoint system with Gaussian white noise, where the
computational cost to construct the snapshot ensembles is
saved when compared to perturbing the primal and adjoint
system with impulses in BPOD. Also, it leads to a much
smaller SVD problem, and an orders of magnitude reduction
in the computation required for constructing ROMs over
the BPOD procedure. The computational results show that
for a large-scale system where BPOD is computationally
impermissible, the RPOD∗ algorithm is still able to solve
the problem in real-time.
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