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Abstract— This paper is concerned with the problem of
stochastic optimal control (possibly with imperfect measure-
ments) in the presence of constraints. We propose a com-
putationally tractable framework to address this problem.
The method lends itself to sampling-based methods where we
construct a graph in the state space of the problem, on which
a Dynamic Programming (DP) is solved and a closed-loop
feedback policy is computed. The constraints are seamlessly
incorporated to the control policy selection by including their
effect on the transition probabilities of the graph edges. We
present a unified framework that is applicable both in the state
space (with perfect measurements) and in the information space
(with imperfect measurements.)

I. INTRODUCTION

This paper proposes a computationally tractable frame-
work to address the problem of stochastic optimal control
(possibly with imperfect measurements). It is well-known
that the stochastic control problem with perfect measure-
ments can be formulated as a Markov Decision Process
(MDP) problem in the state space. Similarly, the stochas-
tic control problem with imperfect measurements can be
formulated as a Markov Decision Process (MDP) defined
on the space of information-states (probability distribution
over all possible states), called information space. Therefore,
to treat these two problems in a unified framework, we
define a generic state, which can be the original state or the
information-state of the problem depending on the context.

Excluding some specific cases (Linear systems with Gaus-
sian noises and quadratic costs), it is well-known that this
MDP cannot be solved analytically. It is also known that
for continuous state, control, and observation spaces the
computational methods are also intractable. Adding state (or
control) constraints to the problem makes it more challeng-
ing. Methods such as Receding Horizon Control [1], and its
variants, are the most widely used approaches in coping with
such problems. RHC was originally designed for determin-
istic systems. Different methods attempt to generalize the
RHC framework to the stochastic systems (e.g., [2], [3]) and
information spaces (e.g., [4], [5]). However, issues can arise
if the cost function is computationally expensive to evaluate
(e.g. computing constraint violation probability), where RHC
may not be computationally feasible in real time.
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In this paper, we propose an alternative framework for
solving the problem of stochastic optimal control (possibly
with imperfect measurements) in the presence of constraints.
The method performs almost all of the computations offline.
The main idea in this framework is to reduce the planning
over the entire state/information space into a planning over a
representative graph within the state/information space. The
main challenge (in particular in the information space) then
is how to generate such a graph (i.e., how to sample its
nodes), and how to guarantee that the nodes of this graph
are reachable. (i.e., how to connect the nodes.)

The key elements in this framework are stabilizers that
are feedback controllers under which the induced Markov
chain converges to a unique stationary behaviour. Then,
according to this stationary behaviour we choose the graph
nodes such that the Markov chain can hit them in a finite
time. Doing so, we can form a graph in these spaces and
then incorporate the problem constraints by encoding them
into the transition probabilities along the graph edges. Such
stabilization procedure breaks the space into independent
smaller parts (graph edges), whose costs can be computed
offline independent of the rest of space.

Initial results on this framework have been presented
in [6]–[8] for specific robotic systems. However, in this
work we provide a broader generic framework, which also
provides a unified treatment in the state and information
spaces. In a nutshell the contributions and highlights of
this framework can be summarized as: (i) it presents a
unified generic graph-based control framework in the state
and information spaces. (ii) It provides a computationally
tractable reduction of the original problem, while is capable
of incorporating constraints into the control problem. (iii) It
is constructed offline and (iv) provides a feedback solution,
which is robust to large disturbances.

II. PROBLEM FORMULATION

In this section, we formulate the stochastic optimal control
problem, in the presence of constraints.

State and Information-state: Let xk ∈ X, uk ∈ U, and
zk ∈ Z denote the system state, control, and observation
at time step k, respectively. We denote the sequence of
these quantities, say z, by zi:j = {zi, zi+1, · · · , zj}. In the
presence of perfect measurements, i.e., if we have access to
exact xk, the system state is used for decision making (gener-
ating control signal). However, if observations are imperfect,
the decision has to be made based on the available data
history Hk = {u0:k−1, z0:k} or equivalently, based on the
information-state bk, defined as the probability distribution
of the system’s state conditioned on the available data, i.e.,
bk := p(xk|Hk) [9]. We denote the information space by B.



Unified State Space: To unify the problem formulation in
the state and information spaces, we denote the generic state
of the problem by sk, which can be either xk or bk, and
denote the generic space by S, which can be either X or B.

State Evolution Model: The process model xk+1 =
fx(xk, uk, wk) describes how the system state evolves as a
function of the applied control uk and the process noise wk,
which is drawn from the distribution p(wk|xk, uk). Similarly,
the filtering dynamics bk+1 = fb(bk, uk, zk) describes the
evolution of the information-state of the system, where the
observation zk is assumed to be drawn from the obser-
vation model p(zk|xk, uk). Thus, in the unified view, we
define fs as the evolution law of the generic state sk+1 =
fs(sk, uk,mk), where mk is either wk or zk. An equivalent
representation of the evolution model is through the transition
probability kernel P(S|s, u), which encodes the probability
of transition from state s to set S ⊂ S under the control u.

Policy: The decision making, i.e., generating control sig-
nals at each time step is performed based on the policy
πk(·) : S → U, which maps the state to the control
uk = πk(sk). We denote the space of policies by Π.

Cost-to-go: To find the optimal policy, we define the cost-
to-go function from every state. Let the function c(s, u) :
S × U → R≥0 defines the cost of taking action u at state
s. Therefore, the cost-to-go Jπ : S → R≥0 from a state s0

under the policy π is defined as:

Jπ(s0) :=

∞∑
k=0

E [c(sk, π(sk))] (1)

Consider a goal region Sgoal ⊂ S such that for all u, we have
c(s ∈ Sgoal, u) = 0, i.e., the goal region is cost absorbing.
Then the above cost-to-go would be finite for a policy that
can drive the state to the goal region in a finite time.

MDP problem: Now, we can define the stochastic control
problem as the problem of finding the optimal policy that
minimizes the cost-to-go function. This problem is also
known as the Markov Decision Process (MDP) problem:

π∗ = arg min
Π

∞∑
k=0

E [c(sk, π(sk))] (2)

s.t. sk+1 = fs(sk, π(sk),mk), mk ∼ p(mk|xk, uk)

Constrained MDP problem: Consider a failure set in the
state and control space F ⊂ X × U, which needed to be
avoided by the system. This constraint can be added to (2)
as Pr((xk, uk) ∈ F ) < δ. It is well-known that the exact
solution for this problem over the continuous state, control,
and observations spaces is computationally intractable in
general. In the next section, we discuss how we reduce this
problem into a computationally tractable problem.

III. GRAPH-BASED CONTROL

In this section, we propose a graph-based controller for
solving the constrained MDP problem. We start by some
definitions on the feedback controllers and reachability.

A. Feedback Controllers and Reachability
One-step transition probability: Any given feedback con-

troller µ(·) : S → U induces a Markov chain with the one-
step transition probability P1(S|s;µ) := P(S|s;µ(s)) over
the space S.

Hitting time: T (A|s, µ) ∈ [0,∞] denotes the hitting time
on the set A ⊂ S, under the controller µ starting from s:

T (A|s, µ) := min{k ≥ 0, sk ∈ A|s0 = s;µ} (3)

Stopping region: We call region S ⊂ S a stopping region
of the controller µ if we force the controller to stop executing
as the state reaches the region S, i.e., for all s ∈ S, we
impose P1(S|s, µ) = 1.
n-step transition probability: We define the n-step transi-

tion probability as the probability of landing in the stopping
region S in at most n steps:

Pn(S|s, µ) = Pr(T (S|s, µ) ≤ n) (4)

Stationary Transition Probability: Consider the controller
µ that starts at state s and stops executing when the state
enters region S. Thus, we define P(S|s, µ) as the transition
probability from s to S induced by µ, when controller stops
executing, i.e., P(S|s, µ) would be the probability of landing
in stopping region S in a finite time:

P(S|s, µ) := lim
n→∞

Pn(S|s, µ) = Pr(T (S|s, µ) <∞) (5)

Reachability: The stopping region S is called reachable
under controller µ from s, if P(S|s, µ) = 1.
αT -reachability: The stopping region S is called αT -

reachable from s, if PT (S|s, µ) = Pr(T (S|s, µ) ≤ T ) > α,
i.e., controller can drive the system into the S in less than
T steps with a probability greater than α.

Reachability Basin: The reachability basin S̆ associated
with the pair (µ, S) is the set of all states from which S is
reachable under µ in the absence of constraints. Thus, the
reachability and αT -reachability basins are:

S̆ := {s ∈ S : P(S|s, µ) = 1}, (6)

S̆(α, T ) := {s ∈ S : PT (S|s, µ) ≥ α}, (7)

Clearly, S ⊂ S̆, and in practice, S is much smaller than S̆.

B. Constraint-free Graph Construction
In this section, we reduce the problem of planning over

the continuous spaces into the planning over a representative
graph constructed within the state space. Doing so, we can
reduce the MDP problem in (2) over the continuous space
into a tractable MDP problem defined over the graph nodes.

Stabilizer sampling: The main step in the construction of
the proposed framework is to sample pairs of stabilizer and
reachable node, i.e., sample (µ, S) such that S is reachable
under the µ, i.e., P(S|s, µ) = 1, with a sufficiently large S̆.
We discuss the sampling strategy and the size of S̆ further
below. Note that the reachability condition can be replaced
by the αT -reachability if needed.

Connecting samples: Consider a set of N samples
{(µi, Si)}Ni=1, where the reachability basin of the i-th sample
is shown by the S̆i. Defining {Si}Ni=1 as the nodes of a graph,
the node Si is connected to the node Sj if starting from any
s ∈ Si, we can reach Sj using µj . In other words Si is
connected to the node Sj if Si ⊂ S̆j . Again, the reachability
condition can be replaced by the αT -reachability condition.

Checking connection condition: For some controllers, the
connection condition can be checked analytically. A few
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examples of such controllers are given below. However, in
general the Markov chain induced by the controller can be
simulated numerically (e.g., using particle-based methods).
Accordingly, we can approximate the reachability (or αT -
reachability) probability and thus check if the condition is
true or not. Since this process is done offline, the compu-
tational burden can be tolerated. However, as we will see
further below, designing suitable edge controllers in practice
increases the reachability probability such that in most cases
there is no need to propagate the probability distribution.
In the following, we give some examples of the controller
and reachable region pairs, and discuss their corresponding
reachability basin.

Example 3.1: Consider a controllable linear system with a
zero-mean Gaussian process noise and consider a Stationary
Linear Quadratic Regulator (SLQR) µ : X→ U designed to
regulate the system to a point v ∈ X. It can be shown that
the stationary distribution over the system state is a Gaussian,
whose mean coincides with v. Thus, it can be shown that a
non-empty ball X ⊂ X centered at v is reachable under
µ starting from any point in X. If the linear system is
obtained by a linearization of a nonlinear system about v,
the argument is still valid as long as the system stays in the
valid linearization region.

Example 3.2: Consider a linear controllable and observ-
able system with zero-mean Gaussian process and measure-
ment noises, and consider a Stationary Linear Quadratic
Gaussian (SLQG) controller µ : B→ U designed to regulate
the system to a point v ∈ X. Let us denote the solution
(which is a covariance matrix) of the stationary Riccati
equation associated with the utilized stationary Kalman filter
by Ps. It can be shown that the stationary distribution
over the system’s information-state is a Gaussian, whose
mean coincides with the information-state b̀ = N (v, Ps).
Thus, it can be shown that a non-empty ball B ⊂ B
centered at information-state b̀ is reachable under µ starting
from any Gaussian information-state. For linearized systems
(originally nonlinear), the argument holds as long as the
system stays in the valid linearization region.

Example 3.3: Consider a linear controllable and observ-
able system with zero-mean Gaussian process and measure-
ment noises, and suppose the state of the system contains
both position and velocity. Thus, it cannot be regulated to a
sampled state, whose velocity dimension is non-zero. In this
case, we can consider a Periodic Linear Quadratic Gaussian
(PLQG) controller µk : B → U designed to track a T -
periodic trajectory vk, i.e., vk+T = vk. Let us denote the
solution of the periodic Riccati equation associated with the
utilized periodic Kalman filter by Pk, where Pk+T = Pk.
It can be shown that a non-empty tube B ⊂ B around
the periodic information-state curve b̀k = N (vk, Pk) is
reachable under µk starting from any Gaussian information-
state. Again, for linearized systems, the argument holds as
long as the system stays in the valid linearization region. This
example can be reduced to the perfect measurement case by
replacing the PLQG controller with a PLQR.

Simplified sampling strategy: As is the case in the above
examples, in many cases we can establish a unique corre-
spondence between the state space sample v and the (µ, S)

sample. Thus, we are able to sample points (or periodic
trajectories) in the state space, and then leverage them to
the (µ, S) samples based on this unique correspondence.

Stopping region: By definition, the graph node S asso-
ciated with the controller µ acts as the stopping region of
the controller. However, in general, if the process under the
stabilizer hits another graph node before its corresponding
graph node, we can stop the controller and pick the best
controller from this intermediate node. Therefore, we can
extend the stopping region for all controllers to the union of
all nodes Ψ := ∪Nl=1S

l. As a result, we will not necessarily
have P(Si|s, µi) = 1 since the process may hit some other
node before Si. But, we will have P(Ψ|s, µi) = 1 for all i
in the absence of constraints.

Local controllers (Simplified connection strategy): To ease
the connection step, and to have more distant nodes, we can
precede each stabilizer by a time-varying controller (referred
to as the edge-controller). To illustrate this idea, consider
two nodes Si and Sj , where Si * S̆j , i.e., Si cannot be
connected to Sj through µj . In this case, we can connect
the underlying state nodes vi and vj in the state space by
a finite trajectory eij (say with length ι), and then design a
time varying controller µijk , for k = 0, 1, · · · , ι to track this
finite trajectory. Therefore, if the node Si is in the basin of
reachability of the pair (µijk , S̆

j), then obviously Si would
be in the basin of reachability of the pair (µij , Sj), where
controller µij = {µij0:ι, µ

j}. We call µij the (i, j)-th local
controller, as it connects the node Si to the node Sj .

Example 3.4: Consider the system, nodes, and stabilizers,
described in Exmp. 3.2. Now, assume that the linear system
is obtained by linearizing a nonlinear system. Therefore, the
reachability basin will not be the entire space of Gaussian
distributions and therefore, if the underlying nodes are sparse
then the node connections may not be established by relying
only on the stabilizers. Suppose the closest node to vj is
vi, and they cannot be connected to each other using µj

as Si * S̆j . Therefore, ignoring the noises, we design
an open-loop trajectory eij of some length ι that connects
the vi to vj . Then, we design a time-varying LQG µij0:ι

controller to track this finite trajectory, which hands over
the system to the stabilizer µj after the ι-th step. By this
construct, we can shift the reachability basin in a desired way.
Again, since these steps are done offline, the reachabilities
under this controller concatenation can be examined through
probability distribution propagation techniques. However, as
verified in our experiments, this construct is quite powerful in
practice and in all of our experiments the concatenated local
controllers are able to satisfy the reachability condition.

Graph: We define the constructed graph with the set of
nodes V = {Si}Ni=1 and the set of edges (or local controllers)
M = {µij}. The set of controllers available at Si is denoted
by M(i), i.e., the set of edges starting from Si.

C. Constraint-free Graph MDP

Having a representative graph of the space S, we can
reduce the planning over S into the planning over the graph.

Graph transition cost and probabilities: We generalize the
transition costs c(s, u) and probabilities to the cost of taking
a local controller (instead of a single control) in a graph node
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and its corresponding transition probabilities along the graph
edges:

Cg(Si, µij) :=

T ij∑
k=0

c(sk, µ
ij(sk)|s0 = s̀i), s̀i ∈ Si

≈
T ij∑
k=0

c(sk, µ
ij(sk)|s0 = s), ∀s ∈ Si (8a)

Pg(Sl|Si, µij) := P(Sl|s̀i, µij), s̀i ∈ Si

≈ P(Sl|s, µij), ∀s ∈ Si (8b)

where, T ij := T (Ψ|s̀i, µij), and s̀i is a representative point
in Si (e.g. its center, if Si is ball). However, obviously for
s̀i to be a good representative for all points in Si, i.e., for
approximations in (8) to be valid, we need the Si to be small
enough and the cost function and transition probabilities to
be smooth enough.

Graph Policy: Graph policy πg : V→M is a function that
returns a local controller for any given node of the graph.
We denote the space of all graph policies by Πg .

Graph Cost-to-go: To choose the best graph policy in Πg ,
we define the graph cost-to-go Jg from every graph node.
Let Sk denotes the graph node at the end of the k-th graph
transition. Then, we can formally define the cost-to-go from
any node S0 as:

Jg(S0;πg) =

∞∑
k=0

E
[
Cg(Sk, π

g(Sk))
]

(9)

where, the cost-to-go from the goal node is zero
Jg(Sgoal;π

g) = 0 for all πg .
Constraint-free graph MDP: The graph MDP aims at

finding the best graph policy and is defined on the graph
nodes as follows:

πg
∗

= arg min
Πg

∞∑
k=0

E
[
Cg(Sk, π

g(Sk))
]

s.t. Sk+1 ∼ Pg(Sk+1|Sk, π
g(Sk)) (10)

Obstacle-free graph DP: Since the graph MDP is defined
on a finite number of nodes, we can form a tractable Dynamic
Programming (DP) to find the optimal cost-to-go and graph
policy:

Jg(Si) = min
µij∈M(i)

Cg(Si, µij) +

N∑
l=1

Jg(Sl)Pg(Sl|Si, µij), ∀i

where Jg(·) := minπg J(·;πg) is the optimal cost-to-go.

D. Incorporating constraints into the control problem

In the presence of constraints, we cannot assure that
the local controller µij(·) can drive the system from Si

into its stopping region with probability one. Instead, we
have to specify the failure probabilities (i.e., the probability
of violating the constraints). As mentioned the failure set
F ⊂ X × U encodes both state and control constraints. Let
Pg(F |Si, µij) := P(F |s̀i, µij) denote the probability that
under local controller µij the system enters the failure set F
before it enters the stopping region of the controller, starting
from Si. Similarly, we generalize the cost-to-go function by
defining Jg(F ) as a user-defined suitably high cost for hitting
obstacles.

Graph MDP with constraints: Therefore, we can modify
the graph MDP to incorporate constraints as follows:

Jg(Si) = min
µij∈M(i)

Cg(Si, µij) + Jg(F )Pg(F |Si, µij)

+

N∑
l=1

Jg(Sl)Pg(Sl|Si, µij), ∀i (12a)

πg(Si) =arg min
µij∈M(i)

Cg(Si, µij) + Jg(F )Pg(F |Si, µij)

+

N∑
l=1

Jg(Sl)Pg(Sl|Si, µij), ∀i (12b)

Thus, all that is required to solve the above DP equation
are the values of the costs Cg(Si, µij) and transition prob-
abilities Pg(·|Si, µij), which both can be computed offline,
either analytically or by simulating the controller behaviour
along the graph edges and storing the costs and transition
probabilities.
E. Overall policy π and Success Probability

The overall feedback π : S → U is generated by
combining the graph policy πg and the local controllers µijs.
Basically, at every graph node, πg chooses the next best local
controller µ and then µ keeps generating controls until the
state reaches another graph node, where again πg picks the
next best local controller. This process continues until the
goal node is reached.

Initial controller: If the start state s0 is not in any of graph
nodes, we design a µ that drives it to a graph node, and from
there we use πg to guide the state towards the goal node.

Success Probability: Constructing the control graph and
solving the DP on it, we end up with a Markov chain
whose states are the set of graph nodes plus the failure
node (constraint set). Except the goal node, the rest of graph
nodes in this Markov chain are transient states. Goal node
and failure node are absorbing states of this Markov chain.
As a result, we can form the transition probability matrix
of this Markov chain and compute the success probability
P(Sgoal|Si, πg) of this Markov chain from any given node
Si under the policy πg in a closed-form [10]. Then, if the
success probability does not exceed a minimum acceptable
success probability pmin, the number of nodes in the graph
has to increase until the condition is satisfied. If, from a given
node Si a successful policy in the class of admissible policies
exists, then this procedure will eventually find a successful
policy due to the probabilistic completeness of the method,
which is established in [11].

Algorithm: The generic algorithm for offline construction
of the graph is presented in Algorithm 1.

Algorithm 1: Offline Construction of the control graph

1 Construct a graph with nodes V = {vj} and edges
E = {eij} in the state space X;

2 For each edge eij , design a controller µij : S→ U and
compute its corresponding reachable node Sj ⊂ S;

3 For each Si and µij ∈M(i), compute transition costs
Cg(Si,µij) and probabilities Pg(Sl|Si,µij), Pg(F |Si,µij);

4 Solve the graph DP, Eq. (12), to compute feedback πg;
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IV. EXPERIMENTS

In the following experiment, we verify the effectiveness of
the method in handling high-dimensional systems, through a
simple example of an 8-arm manipulator. The initial state
of the manipulator is shown in black in Fig. 1 and the
goal is to take the manipulator tip (estimation mean) into
the goal region, shown by the purple circle in Fig. 1. We
consider the more general case of S = B, i.e., the system
is partially observable and we can only measure the system
state through noisy sensors. The initial state is assumed to
be uncertain. It is assumed that the initial estimation mean
coincides with the true initial state. The covariance of the
tip location is shown by its 3σ ellipse (in black) in Fig. 1.
Obstacles (state-constraint) in this environment are shown by
brown rectangles. We utilize the Stationary LQG controllers
as stabilizers. To the best of our knowledge, this is the
first information space planner that can provide a plan over
an entire graph for such a high-dimensional system, while
incorporating expensive costs in planning such as computing
collision probabilities. This experiment shows that graph-
based control can be used as a practical tool in many real-
world problems.

A. Process Model

We consider a planar manipulator with 8 revolute joints.
The state of the system is described by angles of joints
and their velocities X = (θ1, · · · , θ8, θ̇1, · · · , θ̇8)T , and the
available control is considered to be angular accelerations
of joints u = (α1, · · · , α8)T . The process noise w =
(w1, · · · , w8)T is modelled as a zero-mean Gaussian noise
on angular accelerations. Therefore, the continuous motion
model is Ẋt = AXt + But + Gwt, whose discrete version
can be written as Xk+1 = AXk +Bukδt+Gwk

√
δt, where

A =

(
08 I8
08 08

)
, B =

(
08

I8

)
, G =

(
08

I8

)
(13)

and δt is the time interval between consecutive time steps.

B. Observation Model

We use the light-dark environment setting as the observa-
tion model, introduced in [12]. In the light-dark environment
the accuracy of sensory readings are encoded by a grey
level, in which the regions that have access to more accurate
sensory readings are lighter than the regions that do not
have access to such informative sensory readings. In this
experiment, we assume that we measure the state of system,
but this measurement is more accurate as we get closer to
the left wall on which our sensor is mounted (The model
is adopted from [12]). Thus, we have z = [z1, · · · , z8]T =
h(x, v), where

zi = θi + vi, vi ∼ N (0, (η|xi − l|+ σb)
2) (14)

where, xi is the x-coordinate of the i-th joint location, and l
is the location of the vertical wall. η defines the dependency
of the noise standard deviation on the distance from wall,
and σb is the bias standard deviation. Figure 1 shows an
example of such an environment, in which l = −1.5, η = .1,
and σb = 10−4.

C. Sampling (µ, S) pairs
As discussed in Section III-B, we simplify sampling (µ, S)

pairs, by first sampling in the state space and then leveraging
these samples to the (µ, S) samples. Thus, we first choose
a set of samples in the state space V = {v1, · · · ,vN}.
Each sample vi is a 16-dimensional vector consisting of a
randomly sampled configuration (8DOF) augmented by zero
velocities (to have a stabilizable sample). A drawn sample
is valid (i.e., is added to V) only if it is collision-free, i.e.,
if the manipulator joints associated with this sample does
not collide with the obstacles (joint-obstacle collision) and
if they do not collide with each other (joint-joint collision).

As explained in Exmp. 3.2, we leverage every selected
(valid) sample vj to a (µj , Sj) sample. To do so, we design
a stationary LQG controller µj to drive the system towards
the state vj . The stationary LQG is realized by designing a
stationary Kalman filter and an stationary LQR that acts on
the estimation mean. Let us denote the output of the Kalman
filter (estimation) by bk ≡ (x̂+

k , Pk) at the k-th time step,
where x̂+

k is the estimation mean and Pk is the estimation
covariance. It can be shown that under the SLQG controller
Pk evolves deterministically and converges to P js , which can
be computed by solving the corresponding Riccati equation.
While the estimation mean x̂+

k evolves randomly, it can be
shown that its distribution under the SLQG converges to a
Gaussian distribution with mean vj . As a result, a region
Sj ⊂ B in the information space is reachable under the µj , if
Sj has a non-empty interior containing point bj ≡ (vj , P js ).
Thus, formally we define:
Sj={b ≡ (x, P ) : ‖x− vj‖ < δ1, ‖P − P js ‖m<δ2}, (15)

where ‖ · ‖ and ‖ · ‖
m

denote suitable vector and matrix
norms, respectively. The size of FIRM nodes are determined
by δ1 and δ2 that have to be sufficiently small to satisfy the
approximation in (8).

D. Connecting nodes
As explained in Section III-B, we simplify the connection

phase by first making the connections in the state space and
then leveraging them to design local controllers. To do so,
we first connect each vi to its n-nearest neighbors in the
set V = {vj}Nj=1. Let us denote the edge from vi to vj as
eij . Then, we design the edge-controllers µijk as the time-
varying LQG controllers to track the finite trajectory eij .
After tracking this edge to the last point, the edge-controller
hands over the system to the stabilizer µj , which in turn
drives the system to the node Si. The concatenation of the
edge controller µijk and the stabilizer µj is called the local
controller and denoted by µij as explained in Section III-B.

E. Transition costs and probabilities, and controller law
To compute the edge transition cost Cg(Si, µij) and

transition probabilities Pg(Sl|Si, µij) and Pg(F |Si, µij),
we run the controller µij invoked from the node Si on
an ensemble. Accordingly, we approximate the collision
probability and the landing probability in Sl by counting
the number of particles which collided with the obstacles
(violated the constraints) and the number of particles landed
in Sl, respectively. Similarly, we approximate the transition
cost Cg(Si, µij) by computing the cost of each particle
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and averaging them. In this experiments we consider the
underlying cost as follows:

Cg(Si, µij) = α1

T ij∑
k=1

tr(Pk) + α2T ij (16)

where Pk is the estimation covariance at the k-th time step
under the local controller µij and T ij is the stopping time
of the controller µij . α1 and α2 are user-defined linear
coefficients.

Controller construction: Having edge transition costs and
probabilities, we form the DP in (12), and we solve it using
value iteration method. Solving DP results in the πg , which
is stored as a look up table, i.e., it encodes the best next edge
(local controller) that has to be taken at every node Si.

F. Control execution with the graph
Finally, we execute the control law, where at each node we

pick the best next local controller based on πg until we reach
the goal node. We illustrate an execution result in Fig. 1. The
information-state at every time step is composed of a 16-
dim estimation vector and a 16-by-16 estimation covariance
matrix. To visualize this information-state, we map it to
the information-state corresponding to the manipulator tip
using the forward kinematics. The information-state of the
manipulator tip at every step is shown by an ellipse (in red)
which depicts the 3σ ellipse corresponding to the estimation
covariance at that time step, and centered at the estimation
mean. The propagation of this information-state over time is
shown in Fig. 1 until the manipulator tip hits the goal region.

As it can be seen in Fig. 1, there are two passages through
the obstacles to reach the goal region. Although the path
through the right passage is shorter, the manipulator detours
to a longer path through the left passage, to gain more
accurate sensory information. As a result it leads to less
collision probability and a safer path.

The reduction to graph-based control also preserves the
robustness to large disturbances. In other words, suppose
the system is executing the local controller µij and the
system state sk deviates to some s′k that is significantly
far from the edge eij (in the partially-observable case we
use the estimation mean to check the deviation from eij).
In this case, we just need to design a local controller
from the deviated state s0 = s′k that takes the deviated
state/information-state to the best neighbouring graph node,
in real-time, and then we can continue executing the pre-
computed plan from thereon.

V. CONCLUSION

In this paper we have proposed a graph-based framework
to reduce the computationally intractable problem of con-
strained stochastic control into a computationally tractable
problem defined over a representative graph in the space.
Many features of the original solution such as (i) robustness,
(ii) cheap real-time evaluations, and (iii) being far-sighted
(considering the costs all the way to the goal state) are
preserved in this reduction, and as a result it can be a superior
alternative for the RHC variants in stochastic environments in
many problems. The proposed method also unifies the state
and information space problems, while providing a way of
incorporating the constraints into the control law design.

Fig. 1. This figure shows a result of executing the graph-based control
for an 8-arm manipulator in a light-dark (sensing) environment. The
manipulator is attached to the origin (0, 0) and the purple region is the
goal region for the manipulator tip. To unclutter the figure, we only show
the uncertainty of the manipulator tip (end-effector). The initial mean and
covariance is shown by black, and the evolution of the tip covariance during
the plan execution is shown in red. The final estimation mean and the true
configuration of the manipulator are shown in blue and green, respectively.
The obstacles are shown in brown. The manipulator follows a longer but
safer path to the goal region through the left passage, compared to the shorter
but risky (with high collision probability) path through the right passage.
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