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Abstract—This paper presents and studies a recursive informa-
tion consensus filter for decentralized dynamic-state estimation
under circumstances in which the communication network is
unreliable. Local estimators are assumed to have access only to
local information and no structure is assumed about the topology
of the communication network, which need not be connected at all
times. The filter is a hybrid approach: it uses Iterative Covariance
Intersection (ICI) to reach consensus over priors which might
become correlated, while consensus over new information is han-
dled using weights based on a Metropolis Hastings Markov Chain
(MHMC). We establish bounds for estimation performance and
show that this Hybrid method produces unbiased conservative
estimates that are better than CI. The performance of the Hybrid
method is evaluated extensively, including comparisons with
competing algorithms, with a hypothetical ‘full history’ yardstick,
and centralized performance. We conduct an assessment on
a realistic atmospheric dispersion problem, and also on more
carefully crafted settings to help characterize particular aspects
of the performance.

Index Terms—Distributed State Estimation, Covariance Inter-
section, Consensus Estimation.

I. INTRODUCTION

Estimation as a way of fusing information from multiple
sources connected via a network has many applications and,
thus, has been extensively studied in recent years [1], [2]. In
a sensor network, nodes represent sensors that make noisy
observations of the state of an underlying system of interest.
The estimation process is considered centralized if all the
nodes send their raw observations to a central node which
then calculates an estimate based on the collective information
[3]. This is not always possible due to link failures as well as
bandwidth and energy constraints [4]. One viable alternative,
explored in this paper, is Distributed State Estimation (DSE).

In DSE, the processor on each node fuses local information
with the incoming information from neighboring nodes and
redistributes the fused result on the network. The objective is
to design both a protocol for message passing between nodes
and local fusion rules so that the nodes reach a consensus
over their collective information. Although DSE algorithms
are not guaranteed to match the performance of the centralized

Manuscript received December 1, 2012; revised August 26, 2015. Corre-
sponding author: Reza Oftadeh (email: reza.oftadeh@tamu.edu).

1
g 09}
T n B----0
S 08f
3
=

0.7}

[]6 Il Il Il Il Il Il Il Il Il

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
LG —e— Hybrid

B -m-ICI
5 081 Centralized ||
£
153
=]
O 06( 1
<
>
g

04} ]
g L IR EICIEINN  PISIEIEIE - SIETEIPYE PR W J—
£ 02} T :

[) Il L " d L Il L, L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probablity of Link Failure

Fig. 1: Comparison of Iterative Covariance Intersection (ICI) and the Hybrid method
studied in this paper. The graphs show average performance under different probabilities
of link failure. Note that methods in [7], [8], [9] are only applicable in the area where the
probability of link failure is less than 0.2. The Hybrid method relaxes the connectivity
requirement and continues to achieve a better performance than ICI under network failure
conditions.

estimator all the time, their scalability, modularity, and robust-
ness to network failure motivates the ongoing research. These
features are important for the envisioned applications of such
algorithms like multi-agent localization [5] and cooperative
target tracking [6].

DSE algorithms can be categorized based on the assumptions
they make. Any DSE method makes assumptions about one or
more of the following aspects: the state (static [10] or dynamic
[5]), state transition model (linear [11] or non-linear [7]), type
of noise (Gaussian [10], [11] or non-Gaussian [12]), topology
of the network (constant or changing [13], [10]), connectivity
of the network (always [7] or intermittent connection [13],
[10]), agents’ knowledge about the network topology (global
or local [13], [10], [7]) and finally the treatment of mutual
information between local estimate (exact solution through
bookkeeping [1] or conservative solutions that avoid double
counting [14], [15], [16]).

The research on DSE for linear systems with Gaussian noise
is extensive (see [11], [17] for reviews). For nonlinear systems



with Gausssian noise, the distributed versions of Extended
Kalman Filters (EKF), Extended Information Filters (EIF),
Unscented Kalman Filter (UKF), and Unscented Information
Filter (UIF) have been proposed by [9], [18], [7], [19], respec-
tively. For nonlinear systems with non-Gaussian noise, different
flavors of Distributed Particle Filter (DPF) methods were
proposed by [20]. In order to avoid scalability problems and the
need for synchronized random generators, DPF methods make
approximations that result in loss of performance compared to
a centralized PF [12].

For dynamic systems, the connectivity constraint is a
determining factor for choosing the proper DSE method. If the
network remains connected, DSE methods can keep the node
priors the same and perform consensus only on likelihoods [21],
[22]. We refer to this approach as Consensus on Likelihoods
(CL). The advantage of CL is that it can match the centralized
estimator’s performance. However, if the network becomes
disconnected, priors begin to deviate and become different,
and then CL methods fail. For those scenarios, one approach
is to perform Iterative Conservative Fusion (ICF) on node
posteriors [23], [14], [15]. The work in references [24], [18],
[25], [26] also falls into this category. They propose different
optimization criteria to perform Conservative Fusion (CF)
and/or use different iterative CF schemes for distributed state
estimation. ICF methods are inherently sub-optimal as a result
of their conservative fusion rule that avoids double counting at
the expense of down weighting the uncorrelated information.

Recently, researchers have suggested combining ICF and
CL methods to benefit from their complementary features [9],
[7], [13]. CL can reach a consensus over uncorrelated new
information and ICF can handle the correlated prior information.
Such Hybrid methods have been shown to outperform pure
ICF’s performance and remain robust to link failure [13].
Fig. 1 shows how one can benefit from the Hybrid method
for a network with intermittent disconnections. As we discuss
in Section VI, use of the Hybrid method can improve the
performance of the estimation compared to Iterative Covariance
Intersection (ICI) for any possible probability of link failure.

Closest to the work presented here is the research by
Battistelli et al. [7], [8], [9], which develops and establishes
the stability of their ‘Hybrid Consensus on Information and
Consensus on Measurements’ (HCMCI) method for linear and
nonlinear dynamical systems. They assume that the network
remains connected for all time. The motivation for their
algorithm is that CI, though guaranteeing stability for any
number of consensus steps (even a single one), has mean-
square estimation error performance adversely affected if
terminated before consensus is achieved. The reason is that
the fusion rule adopts a conservative point of view, assuming
the correlation between the estimates coming from different
nodes is completely unknown. On the other hand, Consensus
on Measurements (CM) avoids any conservative assumption
on the correlation by fusing only the novel information, but it
does not guarantee stability unless there are sufficiently many
consensus steps. Clearly this can be problematic whenever, for
reduced communication cost and improved energy efficiency,
only few consensus steps can be performed in each sampling
interval.

We believe that the analysis and experiments in this article
gives another reason to perform HCMCI. This paper, in re-
examining that method (which we, for conciseness, dub the
Hybrid method), makes the following contributions:

Relaxing connectivity assumptions: We relax the con-
stant connectivity requirement, something that happens
more often than not in practical situations, and show that
the Hybrid method remains robust to network failures.
Proof of convergence and covariance sandwiching
property: We prove the convergence of the iterative
procedure in the Hybrid method and establish the perfor-
mance bounds for covariance of the local estimators.
Extensive and insightful empirical evaluations: We
evaluate the method through extensive experiments show-
ing that in practice the Hybrid method always outperforms,
by a large margin, ICI on average.

A preliminary version of this research appeared in [13], but
the present paper now includes the fuller theoretical treatment.
To this end, the analysis in Section V, including the proof of
convergence and complexity analysis, is new. We also introduce
more realistic evaluation criteria: we compare the Hybrid
method with the condition where the sensors communicate
their full history (we term this Full History Sharing (FHS),
detailed in Section V-C). Moreover, a more realistic simulation
that assesses the performance of the method, and compares
with FHS, is also presented in Section VI-C.

Motivating Example: Fig. 2 provides an example scenario for
the method described in this section. Consider an atmospheric
dispersion scenario as an example where there are 6 pollutant
sources and 8 sensors distributed in the field, connected to
each other through a time varying graph. At first all sensors
are connected and all the nodes reach a consensus over the
field estimate. Later, for an interval of time, we have two
disconnected groups. The sensors in each group continue
receiving new information and calculate their local estimates on
the basis of their available data. After some time the network
regains full connectivity and the agents in each group acquire
access to the information accumulated in the other group
during the disconnection time. As explained earlier, since the
priors of the two groups are distinct, simple averaging is no
longer applicable, and using Covariance Intersection results
in estimates that are too conservative. The question is how to
handle the consensus over estimates when agents are connected,
during the disconnection time, and after reconnection.

In Section II, the notation used in this article is explained as
well as assumptions and system model. Section III discusses
some preliminaries on distributed estimation, paving the way
for our problem objective and method. The Hybrid method is
presented in Section III along with its theoretical performance
analysis. We extensively evaluate the method’s performance in
Section VI.

II. MODELING

We consider a linear motion and observation model for a
system evolving in discrete time:

X(k+1) = Ax(k) + Bu(k) + w(k),
z(k) = H(k)x(k) + v(k),

(1a)
(1b)



Fig. 2: A motivating example: This is an atmospheric dispersion scenario where 6 pollutant sources and 8 sensors are distributed in the eld. They are connected to each other
through a time varying graph so that at rst all sensors are connected and they remain so for a time interval. Thereafter, due to network interference, we have two disconnected
groups. The question is how to handle consensus over estimates after reconnection.

wherex (k) 2 R", u(k) 2 R™, andz(k) 2 RP represent 3) Observability assumptionWe assume that the pair

state, input, and observation vectors respectivelyk) (A;H (k) is observable. This means that, under complete
N (0; Q(k)) andv(k) N (0;R(k)) represents additive white network disconnection, individual nodes will produce stable
noise used to model unknown perturbations. estimates of the system's state.

The goal of the general recursive estimation problem is toOne expects, and indeed it follows, that the uncertainty
calculate the posterior probability functid®x (k)jz(k)) for in the consensus view of the system's state will decrease
the system at timé, de ned in Eq. 1, given the posterior atas connectivity improves. Next we provide the necessary
stepk 1, i.e,P(x(k 1)jz(k 1)). But this paper studies preliminaries to formalize the notion of this "consensus view.'
a distributed setting in which the system, in general, does I, DISTRIBUTED FILTERING PRELIMINARIES
not have access to a monolithic observation vez{tr). For o ) . )
instance, consider the motivating example depicted in Fig. 2Filtering is the process of recursively computing the posterior
representing an atmospheric dispersion problg. [(As this Probability of a random dynamic procezgk) conditioned on
scenario will also be used for some of our experiments fhSeduence of measurements. The starting point for describing
Section VI, complete details of the model for this problem ifecentralized Itering approaches is the classical centralized
the form of Eq. 1 can be found in [28].) case.

1) Network Topology:Assume that we havdl homoge- A. Centralized Kalman Filter
a graph. These agents can communicate with each other unddfnder the assumption of Gaussian noise, the Kaiman Filter
a time-varying network topolog(k) = hV:E(k)i where (KF) is the optimal recursive Iter for_ I|r.1ear state space
E(k) are the set of edges, such thafvf;v;) 2 E(k), it means systems. We use the following notatioR: = E(x) and

- T
agents andj can communicate directly at that time. NeighborEx . Ellx  R)(x  2)1] are the expecte_d value and the
of nodev, are de ned as the union of the noge and covariance of the random variakke respectively. Then, we

denote the predicted and estimated mean and covariance at

Ni(k) = fvig[fvi 2V (i;j) 2 E(k)g: (2) timek by (® (k);P, (k) and(R(k); P x(k)).
_ _ o The KF comprises update and prediction steps, both typically
Let jN;(k)j denote the cardinality of; (k). using a mean and covariance matrix representation. However, an

Each agent has a sensory package and a processor on-basisnative, the so-calledformation formof the KF, focuses on
Sensors receive observations irt time increments. Every inverses of the covariances of the Gaussian variables involved.
agent's processor and their network connection is fast enoughe information form is useful for decentralized lIters where
to handle calculations based on message passing dvemits it has an intuitive interpretationl], so we use the equations
of time. We assume that t and that the communication of this alternative formulation:
channel is free of delay and error. _ 1 )

2) Observation Model:Each agent's sensor produces noisy y(o =P, l(k)x(k), (3a)
observations that are functions of the state of the system. As the Y (k)= Py (k); (3b)
decentralized system haé versions of Eqg. 1b, the observationyherey (k) andY (k) are termed the information vector and
model for thei™ agent carries an associated subscript:  information matrix, respectively. The prediction step of the KF

zi(k) = H i (K)x (k) + vi(k); can then be Writt:an as N )

vi(k) N (O;Ri(k)): M (k)=(A 7) Y(kl DA (4a)

o : Px(k)= M (k)+ Q “(k); (4b)

For the atmospheric dispersion problem, observers are receptors Y (K=MK M KP, KM K); (4c)

which measure the mass of contaminant deposited at their
location across time. y (K)=Y (kAY (k 1yk 1) (4d)



If this centralized Iter were to be implemented in a situationio calculate the average of the values on the graph nodes. The
where multiple agents make observations (consider, e.g., theights are computed as follows:
atmospheric dispersion scenario), the agents would transmit 8

1 H A l.
their observations to a centralized aggregator. Assuming no % Lrmax fiy [N ig ) 285
network disconnection, the aggregator would perform the =1 = (7
steps in Eq. 4. The aggregator's information vector includes a g (im)zE! _
contribution fromz; (k), the observation of ageftat timek, Y otherwise

equal to ij (k)= H [ (k)R; *(k)z (k). And the information Nte that for each nodg the value of I depends on the
matrix is updated, re ecting theTvarlancle of the agent§egrees of their neighbors only. Further, an important and
observation, with a terml ; (k)= H j (K)R; “(k)H j (k). (In estaplished fact (sed)]) is that using MHMC weights for the

the preceding, the subscript indicates the matrices associaigdraging process will ensure that, after reaching consensus,
to the agent, and should not be read as selecting columige estimates will have converged to the centralized estimate.
Drawing from allN agents, the aggregate estimate is then:therefore, given the ideal centralized estim@é™; P ™

x )
Py . ] we havex!™ = 2™ andP}" = PS™ in the limit. (The
yky=y K+ = Tk (52) superscriplt was used here, and will be used in th(e sequel,
Y=Y (k)+ jN:1 I (K): (5b) to differentiate methods used; the mnemonic is: MH denotes
Metropolis—Hastings, and CTR for centralized.)

Th|S Standard formulation iS Ca"ed the Centralized Information In practice the priors will all differ as a result of network
Filter (CIF) [29]. disconnection. In those cases agents have some shared infor-
However, the assumption of a centralized aggregation procesation (from the time they were last connected to each other)

relies on obtaining access to all the information available gt will likely also accumulate new information in periods of
each time-step. When each agent can only communicate WiiBconnection. Their priors will be distinct but correlated after
its neighbors via transient network links, connectivity mageconnection and, thus, consensus must be handled with care.
only be sporadic and more sophisticate methods are needed) Covariance Intersection-based Estimatowhen the
Next, standard extensions of CIF to decentralized Iters th@tiors differ, distributed averaging alone will not produce
are more suitable for realistic networks are described. Thaesshsistent estimates. One way of handling such a scenario
build on the information Iter formulation. is using Covariance Intersection (Cl). An iterative Cl method
can be used to reach consensus over the local estimates when
) ) ) the priors differ, either owing to disconnection or termination
B. Decentralized Estimator Designs of the consensus process over-early. In iterative 1@, [the
1) Consensus-based Estimatdfhe information lter re- goal is to fuse different estimates of a random variable without

quires one to havei (k) and | (k). First, we express thesehaving any knowledge about the cross-covariance between such

entries in terms of averages across agents: estimates. It solves an optimization problem, updating local
=) estimates iteratively until it reaches consensus. Next, following
i(k)= N Ni jN:1 ij (k); (6a) the discussion inJ4]. we describe that optimization problem.
l(ky= N & sz1 1 (K): (6b) Iterative CI (ICI): Initialization starts with the local estimate
P for each agent}Y,°; y°], assigned to be:
. N .
No '\ were all the agents to obtalﬁ =1 ] (k) and YO, Yitto)+ li(to); YO, yi(to)+ ii(to):
Ni i=1 I'; (k), they could use Eq. 5a—Eq. 5b to calculate

an estimate of the system's state. Both expressions represafft™ OPerating at timescale, for each iteration, solve for

network-wide averages of quantities that the agents poss@ssSuch that =

locally. Global consensus can be reached over the two factors b o=argmin 3 oy LT Y

by performing distributed averaging, so long as all the agents o) .N! L

start with the same prior information amdl is known. If one st 4y =1 8 10

could do'so, it would yield a state'estimate that converg@@ere the optimization objective functiod,( ), is a scalar

asymptotically to the centralized estimate. measure of uncertainty. In general, it is left open as a choice for
To add some detail: the distributed averaging method.6f [ the system designer (we will consideace() andlog det(),

makes minimal assumptions about the network topology apgiow). Local estimates are then updated for the next iteration
only relies on local information exchange between neighboringg

; P
nodes of a graph. The method achieves a consensus value that [Yil+1 ;yil+1] = i ‘.! j [Y-';yj']: 9)

is the average of the initial values of the nodes. It employs an ) .
iterative linear consensus Iter based on the weights calculat®d discussed in24], CI and ICI generate estimates that

from a Metropolis—Hastings Markov Chain (MHMC). In the2"® conservative. Speci cally, for the local estimates and the

" H ICl7 — CTRY —
equations that follow, we elide thie for the ~t-time-step; the CONSENSus value, this means gk %;"] = E[x 2"7=0
consensus iterations, denoted withlasuperscript, operate atandPx;  Px™. An_other.fact, also shown by, is that the
the t timescale. Using a message passing grotocol over fiid method is consistent:

communication graph, we can compwt&?! = }’\ill' i x| P E[x  RO)(x  RHTI: (10)

8



Algorithm 1: Hybrid Method
Consistency implies that the reported covariance matriX,npyt [y (to); Y (to)]

P, is an upper bound of the actual error covariance matrix.yse Eq. 4c-Eq. 4d to calculate predicted values
The question is: Can we tighten the covariance bound of [y: (t1);Y; (t1)] giveny; (to): Y : (to)]

our estimator without losing consistency? We show that .o di -t e A -
( : 0sIng Y 3 Collect local observatiom; (t;) and calculate Jacobian
mgleed this can bg achleyed, but care must be taken, Iestand noise covarianc | (t1); R; (t1)]

this seem contradictory. lts known that the ICI method . ~iculate the local information update

is the optimal consistent fusion rule for posteriors when

correlation information is unknown. In the information form, ij(t1)=H ]-T(tl)Rj 1(tl)zj (t1)

one sees that the correlatl.on has inherent structure. .Posterlors I (t1) = H j‘l’(tl)Rj L(ty)H i (t1)

are mixtures of two parts: priors and new observations, the

former contain information shared with other agents, while the Initialize consensus variables= 0)

latter, importantly, are uncorrelated. 5 Set

P YT =y Y 1)
C. Problem Objective [TJ-O;T]-O]:[ i 1]t
Our goal is to design a recursive decentralized estimator to
calculate the local estimate in a manner that is agnostic to theVhile NOT CONVERGEDidloiI
network's topology. (For reasons which become clear shortly, | BROADCAST[Y; Y;'; i;; ;]
we use "HYB' to denote the estimator.) We wish to obtaig | recevelyl;Y,: Ty; Ty] 8k 2 W}
local estimates|'® and associated covariandeg’® such that 4 | Collect received data

following properties hold:

— £y .yl | — ¢ _
Unbiasedness:E[x %{"]=E[x R™]=E[x 2R°"]=0 q_fykZNll,YkZNllg My =TT Tian 10

Estimate Efciency: J(P{™) J (P{®) J (Py)) 10 Do one iteration of Cl on consensus variables for
(11) local prior informationG
Or, in words, we seek an unbiased estimate whose covariance [yj'+1 :Y,-'+1] = Cl(q)

is an improvement over Cl. ] _ _
11 Do one iteration of MHMC on consensus variables

IV. HYBRID Cl CONSENSUS for new informationg

We outline a Hybrid approach that uses ICI to reach [TJ!”;

consensus over priors and the MHMC-based consensus lter
for distributed averaging of local information updates. THé [ I+l

method is summarized in Algorithm 1. We explain the ow ofz Calculate the posteriors according to:

the via a simple scenario with a pair of agents. Generalization 1

to more than two agents is straightforward and follows similar Yi(t)= Y+ ne T, (12)
steps. _ -\ —

Suppose two agents observe a dynamic eld with state Yi(ta) = ¥+ Nee 1 (13)
vector x; they communicate through a network with time-  return [y; (t1); Y (t1)]
varying topology. At timetp, the agents start with priors
[y; (to): Y 1 (to)] and[y, (to); Y 5 (to)] respectively.

By later timet;, the eld has evolved to a new state
x(t1) and agents calculate their own local prediction (line 1 . i ) )
in the algorithm). Then they make observatiangt;) and For anN -agent ;ystem with thé" agent having priolY; , )
2,(t1), respectively, and compute the local information updatd@€ !C! approach is used to nd a consensus over the priors

—i+1, |
;1= MHMC(M ;)

[ia(t): 11(t1)] and[ i2(t2); | 2(t1)] (lines 2 and 3). using Eqg. 8 recursively. The MHMC approafgh is used to form
: ' - the consensus over the new information, i.eJ_; 1;. One
The agents, were they performing ICI, would nd a fuse P =l T
estimate cannot do MHMC on Eq. 14 becau¥e;, andY , differ; note
how this contrastsI witllq Eqg. 15. Hence, we can use the two
pairs[y; Y,'Tand[ i;; T,]to represent the consensus variables

Y =woY + 1)+(@ W) (Y2 + 12)i  (14) of theith agent at consensus iteratibrior ICI and MHMC

wherew'® is obtained from solving the optimization problerPTOCESSes, respectively.

in Eq. 8. In the Hybrid method we do the following: In line 13 of the algorithm,n.c is the number of agents
Y R = ey g ( W)Y L+ I+ | that. fo_rm a c;onnected group, which can be Qetermined by
YV = %7 3 | L{z—¥ assigning unique IDs to the agents and passing them along
conl (o reach priors inconsensus over the with the consensus variables. Each agent keeps track of unique
(15) IDs it receives and passes them to its neighbors.




V. ANALYSIS somek;j . Further, let us assume without loss of generality
Next, we provide analyses of different aspects of tH8at:J (1;) > J (I). Then given any weights;;! |, with

algorithm. 1+ 1L =1, we have thatl (!]1; + Lil) <! (1) +
! {<J (Ik) < J (1), where the rst inequality follows from the
A. Convergence of the ICI Algorithm strict convexity ofJ (), and the second inequality is due to the

convexity of the line segmend (1);J (1;)]. UsingF (1 );
6 denote thg " component ofF (1), from the de nition
of #he optimization inherent in ICI, we sed:(F(l);) =

The following demanded that we change notation a littl
we denote the consensus iterations lvia parenthesis so as to

avoid overloading the superscript. (We continue, as mention i i i i

previously, in dealing with consensus iterations, which happgr?( ong P 1) 3 (T g < I (1), wherel

between t’vvo t-time-steps.) ’ are the optimal weights resulting from the ICI optimization for
ps. nodej, and! J' ;11 are the arbitrary weights from before.

Proposition 1. If the objectived () in Eq. 8 is strictly convex, 5 Therefore, the Lyapunov functionV(F (1)) =

the ICI process over a connected group in a network 1s;J (F(l1)) < J ()= V()= V, which contradicts
guaranteed to reach a consensus over the priors, @&,, our assumption tha¥ is the lower bound. Thus, any element
such that8i lim;;  Y;(I) = Y . The same result holds for theof = has to be such that all its components are equal thus
information vector as well. implying that the ICI process converges to a unique covariance

Proof. At each iterationl and for each agent, ICI solves an at all nodes.

. o . ; Since the ICI mag= () is deterministic, given the initial

instance of the optimization problem in Eq. 8. Local Va”ablegonditionl (0) is xed, the set has to be a singleton set

Yi(1);8i 2f1, ;Ng are then updated according to ' g '
X

since if there were two elements= 1 %in | it would imply

Y, +1)= Ly, Ly: (16) thatthe ICI map can converge to either of these elements which
i 2N | contradicts the fact that the map is deterministic. O
The de nition of the optimization problem in Eq. 8 requires By establishing strict convexity, the convergence of ICI
that process is guaranteed by Proposition 1. For instahdd)) ,
JY, H(+1) I (Y] ay; 8 2N;: (17) logdet(A) is strictly convex in its argumen8[]. And similarly,

. . . . trace(A) is strictly convex.
Performing ICI is equivalent to a mappirf§ that maps (A) y

the set of local covariance matrices at stego a new

set of covariance matrices at stép- 1. Dening | (I) = B. Discussion on Consistency

Y, 1(1); ;Y ()], we can write At the end of Sectiorill-B, we outlined the fact that ICI
fusion produces a consistent result (recall discussion of Eq. 10);
(+1)=F 1(): (18)  that fact about the estimate holds regardless of whether fusion

Next, take the Lyapunov function of the whole network 4 performed on priors or posteriors. Next, we consider the
iteration| to be question of consistency for the Hybrid method with an analysis

N that is generalized to Eqg. 12 of Algorithm 1, using the known
V(I (D) = J(Y ) 19) consistency of ICL. . .
(M - ) (19) It suf ces to examine the case of two agents, the extension
. . ) _ . to multiple agents is straightforward.
If J () is a positive function over the set of Symmetric Pos't'Véuppose the agents' prior estimates Brg andP , , respec-

: : N .
De nite matricesS., , then8 |; V(I (I)) > 0. Also, because el Then, by the de nition of the covariance intersection
of Eq. 17,V(1 (1 +1)) V (I (1)). SinceV is monotonically o

decreasing and bounded below, P.L.=!P,+(1 1)P,>P

HYB . ’
|!i1m v )= Vv: where! is the intersection weight ané is the true prior

. covariance. Owing to the ICI consistency:
But convergence oV does not necessarily medn has 9 y

converged. However, in this case, it turns out to be indeed thg,s = (P ) T+ 11+ lo< (P ) 1+ 11+ lo,=Y

case. where |, = HR; 'H; is the information matrix corre
. - — - j = HR; ] -
Consider the limit set fiv (1) = Vg Ifthe set sponding to the measurement by fHgagent,Y andY ,.s

consists only of elements, such that all the the components . S = . .
of any element are equal, then, the ICI process becomergpresent the true and Hybrid posterior information matrices,

: H — 1. — 1
stationary, i.e.F (I ) = | . For any such with all components respectively. Noting thaP =Y P yve = Y e, it follows
X . hatP < P . However,P < P ., only shows that the Iter
equal, ICI converges to a unique covariance for all nodes: K . . .
. IS conservative. For consistency, we prove in Proposition 2,
Thus, all we need to show is that cannot have an element

such that its components are not all equal. that the following holds:

HYB HYB HYB\T 1.

We proceed by contradiction. Let us assume there is an Pxw EIx R7)x R{)'L
| 2 such that the elements bfare not all equal. Let, To understand the consistency of the Hybrid method in
denote them™ component ofl . Suppose that; 6 I, for practice, including the effects of early termination of consensus,



we conduct an evaluation using the Normalized Estimatidnstory according to the shared information. The update rule

Error Squared method for realistic scenarios in Section VI-fer H! is [ [
t — t 1 t
Hi = H; z (24)
8j; Ly j=1 8j; 1 j=1

Proposition 2. The Hybrid Iter is consistent i.e.
HYB HYB HYB\T 1.

Piim EI 27 275) 7] wherel;,  is an indicator function which is 1 when there is a

if the agents in a connected group have reached consensuBath between nodeandj under the current network topology.

Obviously 1;, j =1.
Proof. Let the true covariance of the prior estimate be de ned |, FHS, Iat Ieach step, the best possible estimate for each
as v agent is obtained by updating the history and then re-running
— HYB HYB T 1. .

xi = EIx R )(x R )L (20) the lIter from scratch. If the network remains connected, the

utput is equal to the centralized estimator. If the network gets

isconnected, FHS gives the best estimate possible.

P

We know from Eq. 10 that the ICI process is consistent.
the convariance (for agent P {'® , which we obtain from ICI
on priors for the Hybrid Iter will satisfy:P ™ P :

Using the prior covariance given by ICI, the posterior i®. Complexity Analysis
computed by the well known Kalman update equations: Consider the the problem of distributed estimation of a state

HYB _ g HYB HYB Y. vector of dimensiom by a system consisting dfi agents
k:w - k'HYB tK(E H k'HYB ); (21) connected to each other through a netwGrk hV: E(K)i.
R =R+ KH (X &7 )+ Ky Complexity of the ICI method: The core of Cl is a

Py =(1 KH )P (I  KH YT+ KRK T (22) determinant maximization problem and, according 3d][

_ we T e T - the rblmber of iterations required to solve the optimization
where, K = P,® H (HP ;" H" + R) *is the 50" nf () where is a convergence parameter. For each
Kalman gain.z is the measurement, andis the measurement jiaration of the optimization algorithm and for each agemost
noise. The true covariance of the posterior is given by: (considering the objective function log det( )) and gradient
E[x 27)(x AT calculations aref)(n_3 + jN;jn?) and O(jN;jn?) respectively,
_ e ave T +  wherejN;j is nodei's degfgee. Therefore, the complexity of
=(1 KHOE[(x 277 )(x 277 )710 KH ) Cl's optimization step i€0(" n(n3+ jN;jn2)), where we have
+ KRK T: suppressed thie( ) contribution as it is a constant contribution

) v vE throughout.

Using Eq. 20 and® ] Py, »we get Assuming T,, to be the number of iterations until ICI
E[(x R™)(x  RF®)T] converges, the computational complexity requirement for each

agent can be summarized as
=(1 KH)P® (I KH)T+KRK T

(I KH)P{® (I KH)T+KRK T o) IOﬁ(n3 + iNijn?) Ty : (25)
—_ HYB.
=Py ICI relies on passing messages of sjej(n? + n) which is
Thus, independent of the size of the network and only depends on
e v T e the number of agerits neighbors.
E[(x R{)(x R{7)'] P (23)  Complexity of the Hybrid method: For the Hybrid method

the cost of doing MHMC consensus should be considered in
addition to the ICI steps. Each MHMC consensus iteration
updates local covariance in tin@(jN;jn?). The convergence

times of these algorithms are different in general. Assuming

Twn to be the number of iterations until MHMC converges,

~ One way to assess performance of a distributed algorithfe computational complexity requirement for each agent can
is to compare its output to that of a centralized estimator withe symmarized as

access to all the data. But since, in general, no algorithm

subject to network disconnection will fare as well as one not o pﬁ(n3 + NN T + O(N;jn2Tum): (26)
subject to message loss, a better means of comparison ought

to be fairer. We consider, instead, the best possible estimaftwe Hybrid method relies on passing messages of size
given the network connectivity constraints throughout time. W&N;j(n? + n) for exchanging information with neighbors.

use the monikeFull History Sharing(FHS) for a hypothetical ~Complexity of the FHS approach: A conservative upper
non-recursive method used as a yardstick, which operatesbaand for the computational cost @(tN 2n2). Even without
follows: each agent keeps track of its own observations andnsidering the computational cost of performing the union and
all the observations ever received (even indirectly) from oth#re prohibitive memory size and communication requirements
agents connected to it. Denote this Hy. If memory and for passing messages, the full history estimation cost is larger
communication constraints are of no concern, at each time-stbpn the Hybrid method for large This makes it a generally
agents can share their history with each other and update theipracticable approach, as there is no reason to believe that

C. Reallistic evaluation criteria



Fig. 3: Topology of the network when all sensors are connected (left) and when sensors
7, 8 and 9 get disconnected from the rest of the group (right).
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Fig. 4: Comparison of the estimation results using the Centralized Kalman lter, the
Iterative Covariance Intersection, and the Hybrid method. The regions shown in grey
indicate the time intervals in which sensors 7, 8, 9 are disconnected from the remainder.

tracking would only need to occur for some a priori bounded
time.

Memory and message passing requirements to keep the full
history also grow linearly in time which nally will make
the FHS infeasible for real world applications. We only use
the FHS algorithm for comparison purposes as it represents
the best achievable performance under the network topology
constraints.

V|. EXPERIMENTS Fig. 5: Estimation performance comparison among sensors 5 and 8. The formgr is
connected to at least 6 nodes at all times, the latter is isolated during network partition.

We performed several experiments on an atmosphe¥ rst row of the images represents the estimate and the second represent the variance.
. K i e surface plots give a sense of how the estimates vary: (1) and (2) differ quite distinctly
dispersion problem to show the effectiveness of the Hybrighing to Receptor No. 8 being disconnected), whereas (3) and (4) are similar (after
method. evaluate its performance during disconnection arﬁﬂ)nnection). The comparisons are with respect to the Centralized estimator.
after reconnection and show its scalability, convergence rate
and lter consistency. We study a three dimensional problem . :
Y y P convergence, we run the Iter for 20 time-steps. Since we have

and, after proper discretizing of its Partial Differential EquatlopnuItiple sensors, we take the average of the corresponding

emitting pollutant Zinc (referred to a&n from now on)
into the atmosphere. There are also 9 sensors making noisy

measurements of the concentration<Zof around them. We A. The effect of disconnection on estimation performance
assume that sensors can communicate with each other throughm this experiment we intend to evaluate the performance
a time varying network which does not remain connected at aff the Hybrid method during the phase where some sensors
times. Sensors receive information only from their immediateecome disconnected from the rest of the group and get
neighbors. They all have access to the sources' locations arwhnected again after some interval. The topology of the
the source emission is modeled as a white noise process wigiwork takes one of the forms depicted in Fig. 3. The network
known covariance. For our experiments on scalability argfarts fully connected and starting from time-step 3, sensors



7, 8 and 9 become isolated and remain in this situation for 2
steps, then they are connected back to the rest of the sensors.
Similarly, disconnection happens in intervdlsy 20] and
[23 30]
In order to make a comparison we obtain the estimation
result using pure ICI, Hybrid method and also a centralized
estimator to see how much of its performance can be recovered.
Note that the MHMC consensus cannot be done here due to
disconnection. The results are depicted in Fig. 4 where we use
three measures to evaluate the estimates.
As it can be seen, the Hybrid method outperforms pure ICI
as expected and is able to get performance very close to the
centralized estimator results after reconnection.$g(P1; P2)
be the Bhattacharyya distancg?] between the two distribu- Fig. 6: The estimates of various Iters compared against against a centralized estimator
tions Py and P,. We useDg (Pl; P2) = exp( .SB .(Pl; PZ)) as gg;t?;:hsary(;tasgggfr;r:m. communication failures. The differences are quanti ed via the
a closeness measure between the two distributions. As shown in
the gure, the closeneddg between centralized and distributed
estimators drops during the disconnection interval as expectedasure at all steps and for all sensors. Based on Fig. 1, for
since sensors do not have access to all the information availathle case considered in this experiment, the Hybrid distributed
to the centralized estimator. While the Hybrid method is abkstimator performs very similarly to the ideal centralized one for
to immediately recover after reconnection, pure ICI continugs2 [0:0; 0:4], drastically outperforming pure ICI all the time.
to have lower performance even after reconnection owing This means that in the case considered here, the method can
the fact that it calculates conservative upper bounds for therform almost as well as the ideal estimator for an unreliable
joint covariance matrices. network. The Hybrid method recovers the performance of
Fig. 5 takes a closer look at the performance of the Hybritie centralized method when the network is unreliable and
method and compares the estimation results of sensors 5 armli§erforms pure ICI substantially (and always does so, as
during two different time steps. The horizontal axes represeaiteady been established theoretically).
consensus steps not time. Based on Fig. 3, sensors 5 remains

in a group of size 6 during the disconnection periods, wheregs Comparison with Full History Sharing method

sensor 8 is totally isolated at those points in time. The greaterWe performed a comparison with FHS for the atmospheric

difference between c.entrahzed and dlstnb_uted estlmgtes for tggmpling example. We reduced the dimension of the system
sensor can be explained by the fact that it has less informat

at its disposal. However, after reconnection both sensors #0m 10° to 40 using RPOD (A Randomized Proper Orthogonal
P ' ' gcomposition Technique)3f] and simulated the reduced

able to converge to the same value, very close to the centrallzoerger system for 80 steps. A comparison of results with that

estimator. of FHS is shown in Fig. 6. The performance gap between

the results of the Hybrid method and FHS is the price of
B. Performance analysis and robustness to link failure not keeping all the information. The plot shows that, despite
Be widespread use of ICI in applications, it is inferior to the

In this experiment we evaluate the performance of the H br‘
P b y }ﬂbrid method.

method in a systematic way to establish its usefulness a'ﬂ
robustness to networks with a high probability of link failure.
We consider the same system as in the rst experiment aRd Scalability of the Hybrid method
simulate it for 50 time steps. At the beginning of each step, a 4We show that the Hybrid method is scalable by increasing
regular graph with 9 nodes is generated and, given a probabitite number of sensors/agents and comparing its performance
of failure for each link, some links in the graph are randomlyith ICI . We also show that it is scalable even in the dimension
disconnected. The graph still remains connected some fracttsfnthe state by varying the dimension of the state vector of
of the times, depending on the regularity degree and probablyr system. As shown in Fig. 7, the Hybrid method clearly
of link failure. However, with decreasing degree or increasingutperforms ICI not only in estimation performance but also
probability of failure, the network becomes disconnected, moite terms of scalability. Further, the Hybrid estimator is able
often than not. to match the performance of the FHS estimator for a small
In our experiment, fop  0:2, consensus methods no longenetwork and its performance degrades gracefully as the network
always succeed since there is almost certainly a case whsire increases.
the network becomes disconnected at some point in time.  As more sensors are added, more iterations will be needed to
We ran the Hybrid method for 50 steps, for each probabilitgach convergence (this dependency will be considered shortly,
of link failure and compared its performance with the ideal cewhen we examine Fig. 8). For both Figs. 7a and 7b, with a
tralized result (which is obtained by assuming full connectivitked number of iterations (60 for all cases), they show the
at all times). The performance is evaluated by calculating tlkap between the ideal full history lter and the two algorithms.
average value for Bhattacharyya distance and determinant r&rcause the plots report thedative difference from the ideal, it



(a) Performance in terms of Bhattacharyya coef ciebtg() as network size increases.

(b) Performance in terms of RMSE as network size increases.

(c) lllustration of how the estimate quality increases with network size though RMSE and
D metrics show a degradation. This is a trivial result that shows increasing the number
of sensors increases the estimate quality.

Fig. 7: Performance comparison of Hybrid and ICI estimators as the number of sensors
is varied.D g of the algorithms is calculated with respect FHS. The data shown are for
a state dimension of 80 with a xed number of 60 consensus iterations and a link failure
probability of 0.2.

obscures the fact that estimates (for both ICI and Hybrid) with
more sensors are better. In other words, thaDghfalls moving

left to right, theabsoluteestimate quality actually improves.
The performance difference between the FHS and the Hybrid
estimators with 100 agents is larger than the performance
difference between them with 10 agents, and this can be seen

10

(a) Performance in terms @ g for 10 agents.

(b) Performance in terms @ g for 30 agents.

(c) Performance in terms of RMSE for 30 agents.

(d) Fiedler values.

. 8: Convergence rate of Hybrid and ICI estimators. Dimension of the state vector is

in Fig. 7c. 80 and the Fiedler values for the experiments are shown in lower sub gure.

E. Convergence rate of the Hybrid estimator

As seen, the algorithm converges at an exponential rate. As the

Figs. 8, 9 and 10 show the convergence rate of the Hybrid estwork size increases the number of interactions required to
timator and how it varies with the network size and connectivityonverge also increases. The rate of convergence also depends
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