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Abstract—The SLAM problem is known to have a special prop-
erty that when robot orientation is known, estimating the history
of robot poses and feature locations can be posed as a standard
linear least squares problem. In this work, we develop a SLAM
framework that uses relative feature-to-feature measurements
to exploit this structural property of SLAM. Relative feature
measurements are used to pose a linear estimation problem for
pose-to-pose orientation constraints. This is followed by solving
an iterative non-linear on-manifold optimization problem to
compute the maximum likelihood estimate for robot orientation
given relative rotation constraints. Once the robot orientation is
computed, we solve a linear problem for robot position and map
estimation. Our approach reduces the computational burden of
non-linear optimization by posing a smaller optimization problem
as compared to standard graph-based methods for feature-
based SLAM. Further, empirical results show our method avoids
catastrophic failures that arise in existing methods due to using
odometery as an initial guess for non-linear optimization, while
its accuracy degrades gracefully as sensor noise is increased.
We demonstrate our method through extensive simulations and
comparisons with an existing state-of-the-art solver.

Keywords: SLAM, graph-based SLAM, non-linear optimiza-
tion, relative measurements

I. INTRODUCTION

Relative measurements [1–5] allow a robot to exploit struc-
tural properties of the environment, e.g., relative displacement
from one landmark to another is independent of how a robot
moves in a static world given a particular frame of reference.
Taking note of this property, we present a 2D SLAM ap-
proach in which range bearing measurements are transformed
into relative displacements between features. In our method,
relative orientation constraints between poses are formulated
using translation and rotation invariant structural properties.
This allows our method to exploit the separable structure of
SLAM [6–8], i.e., robot heading estimation is separated from
the estimation of past robot positions and feature locations.
Using relative orientations between the set of robot poses,
our method solves a non-linear optimization problem over the
set of robot orientations following which we solve a linear
least squares problem for position (robot trajectory and map).
We call this method Relative Feature Measurements-based
Simultaneous Localization and Mapping (RFM-SLAM).
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(a) RFM-SLAM estimate for
robot trajectory in one of our
simulations. RMS position error
is 1.88m.
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(b) GTSAM estimate for robot tra-
jectory in the same run, catas-
trophic failure due to bad initial
guess.

Fig. 1: Simulation results for map M1 with ≈ 1000 nodes
for RFM-SLAM and GTSAM given identical data. The true
trajectory and landmarks are in green, odometery is in black,
RFM-SLAM estimates are shown in blue and GTSAM esti-
mates in magenta. Feature plots are omitted for the sake of
clarity.
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(a) RFM-SLAM estimate for
robot trajectory in one of our
simulations. RMS position error
is 1.44m.
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(b) GTSAM estimate for robot tra-
jectory for the same run, catas-
trophic failure due to bad initial
guess.

Fig. 2: Simulation results for map M2 with ≈ 2000 nodes for
RFM-SLAM and GTSAM given identical data.

Figures 1 and 2 shows a comparison between RFM-SLAM
and GTSAM [9] for two maps. When the simulated data is
input to GTSAM, the odometery based initial guess results
in catastrophic failure for both maps as GTSAM gets stuck
in a local minima whereas RFM-SLAM recovers the robot
trajectory and map given identical data.



The major contributions of this paper can be summed up as
follows:

1) RFM-SLAM reduces computational complexity of the
optimization problem, i.e., if there are N poses where
each pose xk = [pk,θk]T and L landmarks then we
solve for N variables as opposed to 3N+2L in existing
methods (for the planar SLAM problem).

2) By separating orientation estimation and formulating
the robot and landmark position estimation as a lin-
ear least squares problem, no initial guess is required
for the positions. Further, we show through empirical
results that as odometery noise increases, our method
avoids catastrophic failures which may occur in non-
linear optimization-based methods due to reliance on
odometery-based initial guess.

We now proceed to discuss relevant related work. In Section
III we state our problem and preliminaries, subsequently in
Section IV we present our approach wherein some mathemat-
ical details are relegated to Appendix A. Results are discussed
in Section V followed by conclusions.

II. RELATED WORK

The initial work of [10] introduced filtering as a tool to
tackle the SLAM problem. Several later works [1, 2, 4] pro-
posed to exploit relative feature measurements in a filtering-
based approach. In [2] the correlations between relative mea-
surements from common landmarks are not considered which
leads to a sub-optimal estimate. In [1] only relative dis-
tances are estimated which neglects the information provided
by the direction component of relative measurements. The
method of [4] exploits the shift and rotation invariance of
map structure but cannot consistently incorporate long range
correlations and is thus unable to close loops. In comparison
to aforementioned methods [1, 2, 4] our formulation takes
into account both; correlations between relative measurements
from common landmarks; and long range correlations between
relative measurements in the global frame. This allows RFM-
SLAM to form consistent estimates and close large loops.
The method of [11] exploits relative feature measurements
to decouple map estimation from robot localization in an
Extended Information Filter-based formulation, while main-
taining long range correlations. Compared to [1, 2, 4, 11] we
exploit relative measurements to decouple robot orientation
estimation from map and robot position. Further RFM-SLAM
does not maintain a recursive estimate over the map or robot
state, it falls into the category of methods that solve the full
SLAM problem.

The seminal contribution of [12] introduced a non-linear
optimization based approach to solving the full SLAM prob-
lem wherein robot poses are treated as nodes of a graph and
constraints as edges. In [13] the authors extended graph-based
SLAM to feature mapping and several others [14–20] made
significant contributions to extend the initial work of [12]. A
key limitation of non-linear iterative optimization methods is
that an initial guess is required to bootstrap the solver and this
guess is usually provided by odometery. However, it is well

known that odometery error grows unbounded and is often
unreliable. This reliance on odometery for initial guess makes
non-linear optimization methods susceptible to getting trapped
in local minima often resulting in arbitrarily bad solutions
[8, 21] (sometimes referred to as catastrophic failures, see Figs.
1 and 2). Recent works [6–8] have analyzed structural proper-
ties of SLAM with the aim of decoupling non-linearities that
arise due to orientation. The works of [7, 8] provided several
important insights, demonstrating that estimating orientation as
the first step and using these estimates to initialize pose graph
optimization results in a robust solution. In [22] a general on-
manifold optimization based method is developed to estimate
orientations from noisy relative measurements corrupted by
outliers. In relation to [22], our orientation estimation method
(Section IV-B2) is only concerned with measurement data
corrupted by zero-mean Gaussian noise similar to [6, 7]. We
direct the reader to [21] for a recent survey of 3D rotation
estimation techniques. The works of [6, 7] are closely related
to ours, hence we proceed to discuss these in greater detail.

Linear Approximation for pose Graph Optimization
(LAGO) [7] is a method for planar relative pose graph SLAM
that separates robot orientation and position estimation into
two successive linear problems with the key benefit of a
reduced risk of convergence to local minima and provides
a robust initial guess for iterative optimization. The LAGO
formulation does not deal with feature-based measurements
and cannot be extended to 3D. In contrast, RFM-SLAM is
designed for feature-based SLAM and majority of the algo-
rithm presented in this paper ports directly to the 3D domain
(see discussion in Section IV-D). LAGO develops a closed
form approach (regularization) to solve the angle wrap-around
problem that relies on rounding-off noisy relative orientation
measurements. This technique may degrade rapidly once sen-
sor accuracy reduces beyond a certain threshold ([7], Section
6). In contrast, RFM-SLAM does not invoke any such approxi-
mation as it computes the maximum likelihood estimate for the
orientations via an on-manifold optimization. In this regard,
compared to LAGO, our approach trades computational speed,
for accuracy and reliability in the orientation estimation phase.
In [6], the authors develop a modified Variable Projection
(VP) technique for non-linear optimization that exploits the
separation of position and orientation in SLAM and runs faster
than the standard Gauss Newton algorithm. The method of [6]
solves for orientation and position successively in an iterative
manner as opposed to RFM-SLAM wherein iterative non-
linear optimization is only applied to orientation estimation.
The method of [6] may get trapped in local minima and in
few instances may not converge to a solution ([6], Section
5) as it relies on odometery for the initial guess which may
be arbitrarily bad. Our empirical observations indicate that as
sensor noise is increased, RFM-SLAM performance degrades
gracefully and we do not observe catastrophic failures (see
Table I).



III. PRELIMINARIES AND PROBLEM

Let xk ∈ X, uk ∈ U, and zk ∈ Z represent the system
state, control input, and observation at time step k respectively,
where X,U,Z denote the state, control, and observation spaces
respectively. The measurement model h is denoted as zk =
h(xk) + vk, where vk ∼ N (0,Rk) is zero-mean Gaussian
measurement noise. The map (unknown at t0) is a set of
landmarks (features) distributed throughout the environment.
We define the j-th landmark as lj and l̂j as the estimate of
lj . The observation for landmark lj at time tk is denoted
by zjk ∈ zk. The inverse measurement model is denoted by
g such that for a given measurement zjk and the state xk
at which it was made, g computes the landmark location
lj = g(xk, z

j
k). The state evolution model f is denoted as

xk+1 = f(xk, uk) + wk where wk ∼ N (0,Qk) is zero-mean
Gaussian process noise.

We define ldijk to be the relative feature measurement, from
feature li to lj in the local frame of the robot at time tk. In our
framework, a relative feature measurement is an estimate of
the displacement vector from one feature to another (Fig. 3(a)).
The local relative measurement is computed as ldijk = l∆j

k −
l∆i

k, where l∆i
k,
l∆j

k are relative positions of features li and
lj respectively with respect to the robot in its local frame.
Thus it is linear in positions of the two features in the local
frame. Let C(θk) denote the Direction Cosine Matrix (DCM)
of the robot orientation at state xk. C is a function of the robot
orientation parameter θk (e.g., Euler angles, Quaternions etc.).
A local measurement in the robot frame can be projected into
the world (global) frame as

C(θk)T l∆i
k = w∆i

k = li − pk, (1)

where li and pk are the feature and robot positions in the world
frame. Thus, it is the transformation of local measurements
to the global frame that introduces non-linearity due to the
trigonometric functions of orientation. If heading θ∗ is known,
define l∆ to be the vector of all local feature position
measurements and let [pT lT ]T be the vector of all robot
and feature positions in the world frame, then we have the
following standard linear estimation problem in position

C(θ∗)T l∆ = A′
[
p
l

]
, (2)

where A′ is a matrix composed of elements in the set
{−1, 0, 1}. However, direct heading estimates may not be
readily available due to which we need to estimate the robot
heading. In the proceeding section we develop the RFM-
SLAM algorithm and describe our heading and position esti-
mation method in detail. It is assumed that relative orientation
measurements are independent and the front-end is given, the
focus of this paper is on the back-end estimation problem.

IV. METHODOLOGY

The key steps in RFM-SLAM are as follows:
1) Transform range bearing observations from robot to fea-

tures into relative position measurements in the robot’s

local frame at each pose, then calculate feature-to-
feature displacements vectors (Section IV-A).

2) Compute the relative rotation constraints for poses that
either are connected by proprioceptive odometery or
view identical pairs of landmarks or both (Section
IV-B1).

3) Compute the Maximum Likelihood Estimate (MLE) for
the robot orientation given constraints computed in the
previous step (Section IV-B2).

4) Solve the global linear estimation problem over robot
and feature positions (Section IV-C).

A. Relative Feature Displacement Estimation

Figure 3 depicts our proposed feature mapping process. At
time tk let the robot make range bearing measurements zik
and zjk to landmarks li and lj respectively. Using the inverse
measurement model g (Section III), we have the position of li
in robot’s local frame as l∆i

k = lg∆(zik) and l∆j
k = lg∆(zjk)

for lj . Thus, we can compute the displacement vector from li
to lj in the robot frame as

ldijk = l∆j
k −

l∆i
k = lg∆(zjk)− lg∆(zjk)

= lgd(z
j
k, z

i
k). (3)

lgd(z
j
k, z

i
k) is the relative measurement from li to lj in

the robot’s frame, which is independent of robot position
and orientation. Figure 3(a) shows a simple depiction of a
robot making a relative position measurement between two
features. Let Lk = {lk1 , lk2 , . . . , lkn} be the set of land-
marks visible at time tk and zk = {zlk1

k , z
lk2

k , . . . , z
lkn

k }
be the set of range bearing observations to the same. Let
Dk = {dlk1

lk2 , dlk1
lk3 , . . . , dlkn−1

lkn } be the set of relative
observations between these features, where |Dk| =

(|zk|
2

)
.

Hence, the vector of local relative measurements is as follows

ld̂k = lgd(zk) =


lgd(z

lk1

k , z
lk2

k )
lgd(z

lk1

k , z
lk3

k )
...

lgd(z
lkn−1

k , z
lkn

k )

 . (4)

To estimate the error covariance of the relative measurement
in Eq. 4 we linearize lgd(zk). Let ∇̄lgd|zk

to be the Jacobian
of the local relative measurement function in Eq. 4 and let
Rzk

= diag([Rlk1
, Rlk2

, . . . ]) be the noise covariance of
zk, where Rlki

is the noise covariance of robot’s range
bearing measurement to feature lki . It is important to note
that though measurements to each feature are independent,
the set of relative feature measurements is correlated. This
can be attributed to the correlations between relative measure-
ments from common landmarks (see Eq. 4). Finally, we have
ld̂k ∼ N (ldk,

lRdk
= ∇̄lgd|zk

Rzk
∇̄lgTd |zk

).

B. Heading Estimation

We now proceed to develop a two-part heading estimation
technique. First, we recognize the fact that relative feature



(a) Robot making local relative
measurements.

(b) Robot observes same features
from two different poses forming
a relative rotation constraint.

(c) Tranformation of local robot to fea-
ture relative measurements to the global
frame.

Fig. 3: (a) A robot making observations to two features li and lj at time tk, the range bearing measurements allow the robot
to compute the relative positions l∆i

k and l∆j
k of the features in its local frame which are then transformed to a relative

displacement measurement ldijk between the two features. (b) A robot making observations to two features from poses xp
(green arrows) and xq (blue arrows). Seeing the same two features forms a rotation constraint Cqp between these poses. (c) A
robot sees the same landmark from two poses, the transformation of local relative measurements to the global frame is used
in Section IV-C to solve for robot and feature positions.

measurements-based constraints on the rotation between two
poses are linear in the elements of relative orientation Direc-
tion Cosine Matrix (DCM). Thus we propose a linear least
squares formulation to estimate the relative rotation between
poses. The second step is described in Section IV-B2 where
we apply an on-manifold optimization approach to solve the
general non-linear heading estimation problem at loop closure
given relative orientation estimates.

1) Linear Relative Rotation Estimation: Let Cqp be the
relative rotation matrix between two poses xp, xq such that
vp = Cqpvq , i.e, the vector v in frame q can be transformed
through Cqp to frame p. We know that Cqp = CpC

T
q where

Cp,Cq ∈ SO(2). Let there be two landmarks li, lj visible
from poses xp, xq . Let ldijp ,

ldijq be the vectors from li to lj
in the local frames at each pose. Then we have a constraint
ldijp − lCqpd

ij
q = 0 for every pair of landmarks (li, lj) visible

from xp and xq . Let cqp ∈ R2 be the vector of parameters for
Cqp (see Eq. 19, Appendix A). As a robot moves, it makes
two types of noisy observations:

1) Proprioceptive odometery measurements δ̂θodo ∼
N (δθ, σ2

odo) provide a direct estimate of the relative
rotation δθ between successive poses xp and xq=p+1,
where σ2

odo is the measurement noise variance. Thus the
vector ĉqp,odo = [cos(δ̂θodo), sin(δ̂θodo)]

T .
2) Relative feature measurements to common landmarks

from two poses provide a relative orientation constraint.
Define Dpq = Dp ∩ Dq to be the set of common
relative measurements made from poses xp and xq ,
and ld̂′p ⊆ ld̂p,

ld̂′q ⊆ ld̂q be the respective local
measurements in the set Dpq with error covariances
lR′dp

, lR′dq
respectively. We have the following linear

problem for the relative rotation parameter vector cqp,

ld̂′p = B′qpcqp + vdpq
, (5)

where B′qp(
ld̂′q) (see Eq. 20, Appendix A) is a matrix

function of the relative measurements from pose xq and

vdpq
∼ N (0,Rdpq

) is a zero-mean Gaussian measure-
ment noise. The error covariance in this measurement is
approximated as Rdpq

= lR′dp
+ Ĉqp,init

lR′dq
ĈT
qp,init.

For successive poses, Ĉqp,init = Ĉqp,odo, i.e., the relative
rotation estimate from proprioceptive odometery. Between suc-
cessive poses, all feature constraints in the form of Eq. 5 can
be stacked along with proprioceptive odometery measurements
which gives us the following linear problem[

ĉqp,odo
ld̂p

]
=

[
I

B′qp

]
c +

[
vcqp,odo

vdpq

]
= Bqpc + vcpq

(6)

where vcpq
∼ N (0,Rcqp

), and Rcqp
=

diag([Rcqp,odo
,Rdpq ]). Equation 6 can be rewritten as

zcqp = Bqpcqp + vcqp . (7)

Dropping the pose subscript for clarity, we can compute
the estimate ĉ = (BTR−1

c B)−1BTR−1
c zc and its error

covariance Σc = (BTR−1
c B)−1. Thus between successive

poses, proprioceptive odometery measurements are augmented
with exteroceptive measurements.

A robot may close a loop and return to a previously visited
location and re-observe features. At loop closure, we may
solve Eq. 5 to estimate the relative rotation between two poses
xp and xq . In this case, Ĉqp,init = ĈpĈ

T
q , where Ĉp, Ĉ

T
q

are estimated by chaining together successive relative rotation
estimates computed according to Eq. 7. Note that Eq. 5 can
be solved similar to Eq. 7 to compute the relative rotation
constraint at loop closure. Once Eq. 7 (or Eq. 5) is solved,
it needs to be ensured that the solution is an orthogonal
rotation, thus we project it back onto the SO(2) manifold
as ĉproj = η(ĉ), where η is a vector valued function (see
Eq. 22, Appendix A). The error covariance post projection
is Σcproj = ∇̄η|ĉΣc∇̄Tη|ĉ where ∇̄η|ĉ is the Jacobian of
projection function η computed at the estimated values. Future
references to c will drop the projection subscript for clarity.



Once ĉ is computed, it is transformed into the relative
heading angle value (Eq. 23, Appendix Appendix A), which in
2D is the scalar δ̂θ. Planar SLAM has the property that relative
orientation measurements are linear in heading by virtue of
which we can formulate the following linear problem

δ̂θ = Hθ + vθ, (8)

where δ̂θ is the vector all relative orientation measurements,
H is a matrix composed of elements from the set {−1, 0,+1}
and θ is the vector of robot heading angles. However, solving
Eq. 8 directly may not provide the correct answer as the
linear least squares formulation is indifferent to the angle
wrap-around problem. In the proceeding section we describe
how to overcome this problem. Lastly, we may compute the
information matrix of the global heading estimate from Eq. 8
as Ωθ = HTR−1

θ H where Rθ is a diagonal matrix composed
of uncertainty in relative orientation estimates. In Section IV-C
we show how information matrix Ωθ is used by our algorithm
to compute the map and history of robot positions.

2) On-Manifold Optimization Using Relative Orientation
Measurements: The method described previously allows us
to estimate relative rotations between poses. The set of poses
and constraints from relative rotation estimates form a graph
G = (V, E) whose nodes V = {ν1, . . . , νn} are the pose
orientations and whose edge εpq ∈ E is a relative orientation
constraint between nodes νp, νq . The problem at hand is to
compute the global orientations for all nodes given relative
rotation measurements.

Let Ĉqp be the estimate of DCM Cqp for the relative
rotation between nodes νp, νq . In the noise free measurement
case, ĈqpCq = Cp. However, given a set of noisy measure-
ments we minimize

∑
εpq∈E κqp||ĈqpCq−Cp||F where || · ||F

denotes the Frobenius matrix norm and κqp is a weight for the
measurement Ĉqp. Now the Frobenius norm can be expanded
as follows,

||ĈqpCq −Cp||2 = ||Cp||2 + ||Cq||2 − 2tr(CT
q ĈT

qpCp). (9)

Thus minimizing the Frobenius norm is equivalent to mini-
mizing the term −tr(CT

q ĈT
qpCp) where tr(·) denotes the trace

operator. Using properties of trace (tr(X) = tr(XT )), we have
the cost function to minimize as

J = −
∑
εpq∈E

κqp tr(CT
p ĈqpCq), (10)

where κqp = 1/σδθqp , i.e., inverse of standard deviation of
relative rotation estimate. The Euclidean gradients for the cost
function J are

∂J

∂Cp
= −

∑
εpq∈E

κqpĈqpCq,
∂Fc
∂Cq

= −
∑
εpq∈E

κqpĈ
T
qpCp.

(11)
Note that in the cost function given by Eq. 10, we directly

optimize over the set of orientations for all poses. The initial

guess can be computed by chaining together relative rotation
estimates computed in Section IV-B1. Another way of looking
at Eq. 10 is as follows, we have Ĉqp = VqpCpCq where
Vqp is the perturbation due to noise. Then solving Eq. 10 is
equivalent to computing the maximum likelihood estimator
with a Langevin prior on the perturbation Vqp where κqp
becomes the Langevin concentration parameter [22]. We use
the Manopt MATLAB toolbox developed in [23] to minimize
the cost function J using trust regions based optimization
routine [24].

C. Global Trajectory and Feature Estimation

Let l∆̂ ∼ N (l∆, lR∆ = blkdiag([lR∆1
, lR∆2

. . . ])) be
the vector of all local relative position measurements from
robot to features. After computing the global orientations
according to Section IV-B2, the vector of local relative mea-
surements l∆̂ can be transformed to the world frame similar
to Eq. 2. From the transformed global measurements we can
formulate the linear estimation problem as

w∆̂ = ĈT l∆̂ = A′
[
p
l

]
+ wv∆, (12)

where Ĉ = C(θ̂) is the corresponding composition of DCM
matrices parametrized by the estimated heading θ̂, [pT lT ]T

is the vector of robot and feature positions, A′ is a matrix
with each row containing elements of the set {−1, 0,+1}
and wv∆ ∼ N (0,wR∆ = CT lR∆C) is the noise vector.
If we were to solve for the feature positions directly from
Eq. 12, we would end up with an incorrect estimate as the
global orientation estimates θ̂ are correlated. Thus relative
feature measurements in the global frame are correlated with
heading estimates as well. We now describe how to setup the
position estimation problem while correctly incorporating the
appropriate error covariances similar to the trick employed
in LAGO [7]. After computing the orientation estimates θ̂
along with the transformed global relative robot to feature
measurements we stack them to give us a new measurement
vector γ. Then we have

γ = hw(l∆,θ)+vw =

[
ĈT l∆̂

θ̂

]
=

[
A′ 0
0 I

]
︸ ︷︷ ︸

A

p
l
θ

+

[
wv∆

vθ

]
.

(13)
The error covariance Rγ of measurement vector γ is then

given by,

Rγ = ∇̄hw

[
lR∆ 0

0 Σθ

]
∇̄Thw (14)

where ∇̄hw is the Jacobian of measurement function hw
(Eq. 13) given by

∇̄hw =

[
CT M l∆̂
0 I

]
, (15)

where M = ∂CT

∂θ . Thus we have



Rγ =

[
wR∆ + MΣθMT MΣθ

ΣθMT Σθ

]
. (16)

Finally, the solution to the linear estimation problem of Eq.
13 is given byp∗

l∗

θ∗

 = (ATR−1
γ A)−1ATR−1

γ γ. (17)

Note that Eq. 17 involves the inversion of a large sparse
matrix Rγ which may not be suitable for implementation
due to complexity and potential numerical issues. However,
this inversion is easily avoided by analytically computing the
information matrix Ωγ = R−1

γ using block-matrix inversion
rules as

Ωγ =

[
wR−1

∆ −wR−1
∆ M

−MTwR−1
∆ Ωθ + MTwR−1

∆ M

]
. (18)

D. Extending RFM-SLAM to 3D
The global orientation optimization problem given relative

measurements (Eq. 10) does not change from 2D to 3D. A
minor difference arises in solving for relative orientation at
loop closure (Eq. 5) where a robot would require observations
to 3 features from two poses as 9 constraints are required to
solve for the DCM (Ck ∈ R3×3 in SO(3)). Further, the linear
position estimation problem of Eq. 13 also remains identical.
The key difference occurs in computing the uncertainty over
global orientation estimates as the 3D rotation problem cannot
be setup similar to the 2D case (Eq. 8). In 3D, relative
orientations measurements are not linear in robot orientation,
rather they are non-linear functions of rotation parameters. In
this regard, the work of [25] develops an analysis for first-
order error propagation in 3D rotation estimation which may
be applicable to 3D RFM-SLAM. Investigating this aspect of
the estimation problem forms part of our future work.

V. RESULTS

We conducted 1600 simulations in total for two planar
maps M1 and M2 (see Figs. 4(a) and 4(b)). The maps
themselves were constructed by randomly sampling landmarks
in a 2D environment after which simulated sensor data was
collected by driving the robot around a sequence of way-
points. Proprioceptive odometery noise σodo is varied by
scale factor α = {1, 2, 3, 4}, where α = 1 corresponds to
σodo = diag([0.05m, 0.05m, 0.6◦]) and range bearing sensor
noise σrb is varied by scale factor β = {1, 2, 3, 4}, where
β = 1 corresponds to σrb = diag([0.05m, 0.6◦]). For each
map, 50 simulations were conducted for each fixed noise level
and 16 variations of noise values were used in total. For each
simulation the resulting data was processed by both RFM-
SLAM (MATLAB) and GTSAM (C++) [9]. GTSAM utilized
the Levenberg-Marquardt Algorithm and both Manopt [23]
and GTSAM were allowed a maximum of 100 iterations. We
now proceed to discuss our results in the context of key aspects
that affect solution accuracy, i.e., map, odometery noise and
range bearing sensor accuracy.
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(a) Map M1 with 1129 robot
poses and 286 landmarks. The
robot trajectory is 544.50m long
with 2 loop closures but robot
does not return to start.
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(b) Map M2 with 2064 robot
poses and 777 landmarks. The
robot trajectory is 1000.87m
long with 5 loop closures.

Fig. 4: The two scenarios used in the simulations and com-
parisons.

A. Changing Map

Figure 4 shows the two maps; map M1 with 1129 robot
poses and 286 landmarks; and map M2 with 2064 robot poses
and 777 features. Each map presents a different challenge,
i.e., in M1 there are 2 loop closures and robot trajectory
does not terminate at the start location, whereas in M2 there
are 5 loop closures and robot returns to its start location.
Table I shows that GTSAM average RMSE in robot pose
is greater for map M2 than M1 for all noise combinations
except for α = 4, β = 1. We note GTSAM suffers more
catastrophic failures in map M2 than map M1 (Table I). This
is despite the fact that there are more loop closures in M2
and robot returns to start. The previous observation may be
attributed to the trajectory in M2 (≈ 1000m) being longer
than in M1 (≈ 500m) which results in odometery based initial
guess being further from the ground truth than for map M1.
An interesting difference emerges, for all noise combinations
in the case of RFM-SLAM, average RMSE for map M2 is
smaller than that for M1 despite the trajectory in M2 being
twice as long as that of M1. This may be attributed to two
factors; RFM-SLAM is able to exploit the graph topology
for M2 (multiple loop closures) in the orientation estimation
phase1; using range bearing measurements to augment relative
orientation estimation provides a measure of robustness to
the on-manifold optimization problem and purely odometery-
based initial guess plays no role in the estimation process.

B. Increasing Proprioceptive Odometery Noise

Figure 5 shows that for low odometery noise β = 1 both
methods perform comparably (same order of magnitude in
RMSE) in both scenarios. For β = 1, in the case of map M1
GTSAM performs slightly better than RFM-SLAM. Increasing
the proprioceptive odometery noise has the effect of reducing
the quality of initial guess that GTSAM relies on which is
evident from Figs. 5(a) and 5(b). In both maps, as β is
increased, RFM-SLAM performance degrades much slower
compared to GTSAM, where in map M2 particularly (Fig.

1An excellent insight into the problem of how graph topology affects SLAM
accuracy is provided in [26, 27].
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Fig. 6: Behavior of RMSE in robot position as range bearing
noise level α is increased for different β.

5(b)) GTSAM shows a rapid decline in solution accuracy. We
take the case of α = 1 to highlight the variation in solution
accuracy as odometeric noise is increased from lowest (β = 1)
to its highest (β = 4) value. In the case of M1, GTSAM
solution accuracy degrades from 1.004m to 5.389m as the
number of catastrophic failures increased from 0 to 4, whereas
RFM-SLAM accuracy degrades from 1.475m to 2.256m. In
the case of M2, GTSAM solution accuracy degrades rapidly
by 1709.3% as RMSE rises from 1.718m to 31.084m due
to the number of catastrophic failures rising from 1 to 18
whereas RFM-SLAM accuracy reduces gently from 0.859m
to 0.982m. Thus simulation results show that RFM-SLAM
solution accuracy degrades gracefully for both maps with
increasing noise as it does not suffer catastrophic failure
whereas GTSAM’s performance is dominated by its sensitivity
to the initial guess error (odometery).

C. Increasing Range Bearing Sensor Noise

Figure 6 shows that for the lowest odometeric noise value
(β = 1), both methods show a well defined behavior in
RMSE growth as α increases. We look at the variation in
error between lowest (α = 1) and highest (α = 4) range
bearing sensor noise when proprioceptive odometery noise is
lowest (β = 1). In map M1 as α increases from 1 to 4, RFM-
SLAM RMSE rises from 1.475m to 5.028m, for GTSAM in
the same map, we see a rise from 1.004m to 2.687m. In case
of map M2, RFM-SLAM RMSE increases from 0.859m to
4.4m (418% increase) whereas for GTSAM we see a rise

from 1.718m to 1.771m. Thus RFM-SLAM exhibits a higher
relative increase in RMSE than GTSAM for increasing α.
Thus simulation results show that compared to GTSAM, RFM-
SLAM performance is dominated by range bearing sensor
noise.

D. Discussion

Each method has a dominating factor that affects its behav-
ior; for RFM-SLAM it is the range bearing sensor noise as we
rely on this information in the orientation optimization phase;
for GTSAM it is the proprioceptive odometery as it relies
on odometery to bootstrap the solver. However, our results
indicate that for all noise values, RFM-SLAM remains free
of catastrophic failures due to which RMSE growth behaves
well unlike in the case of GTSAM where the propensity of
catastrophic failures increases with odometeric noise. In the
case of GTSAM we see an order of magnitude increase in
maximum RMSE over RFM-SLAM (≈ 40m vs. ≈ 7m) at
α = 3, β = 4. In few cases, GTSAM failed to converge to a
solution, these numbers are also reported in Table I. Further
as the number of robot poses grows, odometery based initial
guess diverges in an unbounded manner which may tend to
dominate the solution accuracy in existing methods compared
to noise in range bearing sensing. These results indicate a clear
benefit of separating orientation and position estimation as it
enhances robustness and reliability of the SLAM solution.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a novel approach to solving the feature-
based SLAM problem was presented that exploits separation
of robot orientation from position estimation. Our proposed
method RFM-SLAM undertakes a computationally cheaper
optimization problem than standard graph-based approaches.
Further, empirical results indicate that RFM-SLAM is able
to avoid catastrophic failure and solution accuracy behaves
well under varying noise conditions. We can safely conclude
that decoupling orientation estimation from position exhibits a
distinct advantage in that robust solutions can be obtained due
to reduced risk of catastrophic failures. Future work involves
implementing RFM-SLAM in more efficient frameworks, e.g.
C++ to compare the time required to solve given problems
with state-of-the-art solvers. Though the non-linear optimiza-
tion problem for orientation may be susceptible to initial guess
error, such an issue was not observed, perhaps the underlying
nature of the orientation estimation problem is less sensitive to
the initial guess. This is an interesting aspect of our approach
which will be studied as part of future work.
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APPENDIX A
RELATIVE MEASUREMENTS AND ROTATIONS IN 2D

Parameterizing the Direction Cosine Matrix: Let the rotation from pose xp to xq

be δθ. The DCM Cqp for the relative rotation δθ between xp and xq is,

Cqp =

[
cos(δθ) −sin(δθ)
sin(δθ) cos(δθ)

]
. (19)

Thus in planar scenarios the matrix Cqp is parameterized by the 2-vector cqp =
[cos(δθ), sin(δθ)]T .

Relative Feature Measurements-based Constraints on Orientation: Let a robot
make observations to two landmarks li and lj from poses xp and xq as shown in Fig.
3(b). Observing this pair of landmarks from both poses forms a relative orientation
constraint Cqp between xp and xq . Let ldij

p and ldij
q be the relative feature

measurements made from xp and xq respectively, then we have the following relation
ldij

p = Cqp
ldij

q . Using Eq. 19 in this relation and rearranging, we have the following
constraint on the relative orientation parameters,[

ldijp,x
ldijp,y

]
=

[
ldijq,x −ldijq,y
ldijq,y

ldijq,x

]
︸ ︷︷ ︸

B′qp

[
cos(δθ)
sin(δθ)

]
. (20)

Projection onto SO(2) Manifold: As discussed in Section IV-B1, solving Eq. 7
or Eq. 5 does not provide an orthogonal rotation as the solution. Thus the linear least
squares solution ĉ is projected back on the SO2 manifold by normalization

ĉnormalized = η(ĉ) =
ĉ

||ĉ||
. (21)

Followed by computing the Jacobian

∇̄η =
1√

c21 + c22

[
c22 −c2c1
−c2c1 c21

]
, (22)

and then transforming the covariance given by the linear problem as
Σcnormalized

= ∇̄ηΣc∇̄Tη. We drop the normalized subscript for readability.
From the projected DCM parameters we can compute the rotation angle

δθ̂ = tan
−1

(
c2

c1
). (23)
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