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Information Space Receding Horizon Control for
Multi-Agent Systems

Z. Sunberg, S. Chakravorty, R. Erwin

Abstract—In this paper, we present a receding horizon solution
to the problem of optimal scheduling for multiple sensors
monitoring a group of dynamical targets. The term ’target’ is
used here in the classic sense of being the object that is being
sensed or observed by the sensors. This problem is motivated
by the Space Situational Awareness (SSA) problem. The multi-
sensor optimal scheduling problem can be posed as a multi-agent
Partially Observed Markov Decision Process (POMDP) whose
solution is given by an Information Space (I-space) Dynamic
Programming (DP) problem. We present a simulation based
stochastic optimization technique that exploits the structure
inherent in the problem to obtain variance reduction along with
a distributed solution. This stochastic optimization technique is
combined with a receding horizon approach which obviates the
need to solve the computationally intractable multi-agent I-space
DP problem and hence, makes the technique computationally
tractable for such problems. The technique is tested on a
simple numerical example which is nonetheless computationally
intractable for existing solution techniques.

I. INTRODUCTION

In this paper, we consider the problem of optimal
scheduling for multiple sensors such that the information
gained by the sensors is maximized. The class of problems
that is considered is motivated by the so-called Space
Situational Awareness (SSA) problem. It is easily shown
that the scheduling problem, in general, may be posed as
a Partially Observed Markov Decision Problem (POMDP)
whose solution is given by an information space (I-space)
Dynamic Programming (DP) problem. In the case of multiple
agents, the resulting problem is a multiple agent I-space DP
problem that is impossible to solve computationally owing to
the exponential complexity of the problem in terms of the
number of agents and the resulting exponential explosion of
the state and control spaces. We propose a generalization of
an I-space receding horizon control (I-space RHC: IS-RHC)
approach that we had proposed to the single sensor problem in
previous work [1], to the case of multiple agents. The solution
strategy is termed the I-space RHC multi-agent technique
(I-RHC-M). The online stochastic optimization problems that
result from the receding horizon approach are solved using a
simulation based gradient ascent technique. The underlying
structure of the problem allows us to drastically reduce
the variance of the gradient estimates while allowing for a
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distributed implementation of the gradient ascent technique.
The technique is tested on a simple example to show the
efficacy of the method.

The optimal sensing problem has its roots in the
“exploration-exploitation” trade-off of adaptive control
[2]. The trade-off roughly stated is that, in general, we
cannot identify a system’s unknown parameters in closed
loop, the question then being “is there an intelligent way
to address the problem” rather than the ad-hoc method of
applying non “certainty-equivalence” control inputs at random
throughout the identification process. In recent years, the
optimal sensing problem has garnered a lot of interest in the
Control and Robotics community and is variously known
as Information-theoretic Control/ Active Sensing and Dual
Control [3]–[13]. Discrete dynamic scenarios such as target
tracking [7]–[10], and linear spatially distributed systems
[14], [15] have been considered, but relatively very little has
been done on the optimal sensing of nonlinear dynamical
phenomenon. In the linear dynamical scenario, the optimal
scheduling problem results in a deterministic optimal control
problem which can be solved using Model Predictive control
(see below). In the nonlinear case, the problem is stochastic
and thus, is significantly harder to solve since we have
to solve the associated stochastic DP problem. In the past
decade, there has also been a significant volume of research
on the problems of co-operative sensing, estimation and
control [16]–[21]. These techniques have considered various
classes of multi-agent systems and have proposed distributed
estimation and control schemes for such problems including
formation keeping, flocking and distributed sensing. The
multi sensor scheduling problem we consider in this paper
also falls under the category of multi-agent systems, however,
the structure of the problems that we consider, motivated by
the SSA problem, is unlike any other in the aforementioned
literature. In particular, the problem we consider has a time
varying graph structure that introduces further complexity into
the problem and none of the above techniques are applicable.
In this paper, we suggest a receding horizon control approach
to the solution of such stochastic multi-agent sequential
decision making problems, in particular, I-space sequential
decision making problems for multiple agents, that allows
us to account for all the complexities introduced by the
class of problems representing the SSA problem. Further, the
underlying structure of the problem is exploited to obtain
variance reduction of the gradient estimation that is required
by the technique as well as a distributed implementation of
the technique.
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It is very well known that stochastic control problems with
sensing uncertainty, of which sensor scheduling problems are
a special case, can be posed as a Markov Decision Problem
(MDP) on the I-state, which is usually the conditional filtered
pdf of the state of the system [2], [22], [23]. Unfortunately, it
is also equally well known that such problems are notoriously
difficult to solve owing to the twin curses of dimensionality
and history, so much so that such problems have only been
solved for small to moderate sized discrete state space
problems (i.e., wherein the underlying state space of the
problem is discrete). Initially, exact solution of the POMDPs
were sought [23], [24] utilizing the convexity of the cost-to-go
function in terms of the I-state. However, these techniques
do not scale well. Thus, focus shifted to solving such I-space
problems using randomized point based value iteration in
which a set of random I-states are sampled in the I-space and
an approximate MDP defined on these randomly sampled
states is then exactly solved using standard DP techniques
such as value/ policy iteration [25]–[27]. These methods have
resulted in the solution of much higher dimensional problems
when compared to the ones that can be solved using exact
techniques, however, these methods still do not scale to
continuous state, observation and control space problems. The
problem we consider in this paper is a multi-agent POMDP
and the state and control space of the problem explodes
exponentially in terms of the number of agents involved in
the problem. Thus, these problems are exponentially harder
to solve computationally when compared to single agent
I-space problems. There has been considerable interest of
late in solving multi-agent MDP problems that are tailored
to exploit the structure that is inherent in such problems
and Value/ Policy Iteration as well as reinforcement learning
based techniques have been designed to solve such problems
[28]–[32]. However, the class of problems that we consider
in this paper do not conform to the structure required by
these techniques. Further, the above methods only apply to
small discrete state space problems and thus, are unable to
scale to continuous state and observation spaces that are
encountered in the SSA inspired multi-sensor scheduling
problem considered in this paper. The I-RHC-M technique
sequentially solves open loop optimization problems given
the current I-state of the system which precludes having
to explore the huge state space of multi-agent MDPs and
thereby, keeps the method computationally tractable.

Model Predictive or Receding Horizon Control (MPC/
RHC) is one of the most successful applications of control
theoretic techniques in the industry [33], [34]. In the
deterministic setting, the MPC technique and the Dynamic
Programming technique essentially give the same answer in
that they provide the optimal feedback control solution. The
MPC techniques solve a sequence of finite horizon open loop
control problems in a receding horizon fashion instead of
solving the infinite dimensional DP equation offline. In this
fashion, constraints on the systems can be taken into account,
which is very difficult in DP, provided the open loop optimal
control problems can be solved online. This has led to many

successful applications [33], [34]. Recently, there has been
increasing interest in stochastic receding horizon control
(SRHC) approaches [35]–[37] that provide receding horizon
approaches to constrained stochastic control problems.
However, many of these techniques have been developed for
linear systems with analytical models of the dynamics and
constraints. However, in our case, an analytical model of the
process does not exist, instead we have access to simulations
of the process. We propose an SRHC approach to solve the
multi-agent I-space sequential decision making problems,
wherein a sequence of open loop stochastic optimization
problems are solved online in a distributed receding horizon
fashion. The online optimization is carried out using a
distributed simulation based optimization technique. It should
be noted that in the stochastic case, the RHC and DP
techniques do not coincide because in the DP formulation,
the optimization is over feedback policies and not open loop
control sequences as in the I-RHC-M technique. However,
such DP problems, in particular, I-space problems, especially
multi-agent problems, are computationally intractable in
continuous state and observation spaces, and thus, the I-RHC-
M technique provides a computationally attractive solution to
multi-agent I-space problems. The empirical results show that
the I-RHC-M technique does lead to better payoffs in terms
of information gains when compared to a shortsighted strategy.

The rest of the paper is organized as follows. In Section II,
we formulate the class of multi sensor scheduling problems of
interest, primarily motivated by the SSA problem. In Section
III, we present the I-RHC-M technique for the solution of
this class of problems. In Section IV, we present a simple
numerical example involving multiple sensors measuring a
group of nonlinear simple pendulums, which nonetheless is
intractable for other existing techniques in the literature, as an
application, and proof of concept, of the I-RHC-M technique.

II. MODEL AND PROBLEM FORMULATION

In this section, we model the class of multiple sensor
scheduling problems that we are interested in solving in
this work. This class of problems is motivated by the Space
Situational Awareness problem (SSA) but can be extended in
a straightforward fashion to other broader classes of problems.

We are interested in tracking a set of N targets where the
state of the ith target is governed by the stochastic ODE:

ẋi = fi(xi) + giwi, (1)

where wi is a white process noise term perturbing the motion
of target i. The term ’target’ is used here in the classic sense
of being the object that is being sensed or observed by the
sensors.
We assume that there are M sensors S = {Sj}, typically
M << N , and suppose that every sensor j can make a
measurement of one among a set of targets at ay given point
in time denoted by the set T j(t), where

T j(t) = {k ∈ [1, .., N ]|target j is visible to sensor i}.
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We make the following assumption to simplify the presentation
of our technique, however, it can be relaxed in a relatively
straightforward fashion.

A 1. Any target ”‘i”, at any time ”t”, is in the field of view
(FOV) of only one sensor.

Further, let us denote by S(i, t), the unique sensor that can
see target i at time t, i.e, S : TxH → S , is an integer valued
function that maps the product space of the target set T and
the time horizon H = [0, ..,H] into a unique positive integer
denoting a particular sensor in the set of sensors S. We make
the following assumption.

A 2. The function S(i, t) is known a priori for a given time
horizon H.

Its obvious that the following relationship holds between
T j(t) and S(i, t):

T j(t) = {i ∈ T |S(i, t) = j}. (2)

Thus, knowing S(i, t) allows us to find T j(t) and vice-versa.
The above assumption allows us to simplify the problem
somewhat by assuring us that the set of control choices
available to the different sensors is deterministic, albeit time
varying. A more general formulation would allow the set
of control choices available to sensor j at time t, say Ut,
to be random as well as time varying. Further, the random
set Ut would be dependent on the information states of the
targets, {χi(t)} at time t. A naive approach would be to
allow the choice of every target to every sensor at every
time step, however, this would lead to an absolute explosion
of the complexity and hence, is not practically useful. We
note that the S(i, t) function can be thought of as a ”most
likely” a priori estimate of the sensors’ control choices, and
discrepancies due to the stochasticity of the system can be
accounted for in the planning phase. For instance, if there is a
target in view of a sensor that is not predicted by S(i, t) then
the sensor will never look at that target, and if a target that
was predicted to be there is not, then the reward for making
a measurement of the non-existent target would be negative
as the uncertainty would increase, and hence, the control
policy would learn to avoid such a choice. We shall have
more comments about this aspect of the problem after we
have presented our I-RHC-M technique to solve the problem.

Suppose now that a sensor j can make a measurement of
precisely one of the targets in its FOV at time t, i.e.,

yi = Hj(xi) + vj ,where i ∈ T j(t), (3)

and vj is a white measurement noise process corrupting the
measurements of sensor j.

Given the measurements of a target i till time t, we
assume that some suitable Bayes filter is used to estimate its
conditional pdf. Let us denote its probability density function/
Information state (I-state) by χi(t). Let uS(i,t)

t denote the
control action of sensor S(i, t) at time t, i.e., the target that
sensor S(i, t) chooses to measure from among the targets in

its FOV at time t, namely TS(i,t)(t).
Let the incremental reward/ utility/ information gain of tak-
ing control uS(i,t)

t for target i, at time t, be denoted by
∆I(χi(t), u

S(i,t)
t ). Then, the total reward of using a sequence

of time-varying control policies over a time horizon H for
target i, {uS(i,t)

t (.)}Ht=0, is given by:

V (χi, {uS(i,t)
t (.)}Ht=0)

= E[

H∑
t=0

∆I(χi(t), u
S(i,t)
t (χ̄(t)))/χi(0) = χi]. (4)

In the above expression, the expectation is over al information
trajectories that result from the feedback policies uS(i,t)

t (.). In
general, the feedback control function for any sensor S(i, t)
that sees target i at time t, is a function of the composite I-state
of all the targets χ̄ = {χ1, · · ·χN}, not just χi. We assume
that the total reward for the system is the sum of the rewards
of the individual targets, i.e.,

V (χ̄, Ū(.)) =

N∑
i=1

V (χi, Ū(χ))}), (5)

where Ū(χ) = {ujt (χ)} for all possible sensor-time tuples
(j, t). The problem can then be posed as one of maximizing the
total reward of the system over all feasible feedback policies of
the individual sensors. The feasible control set over which the
composite control of the sensors Ūt(.) = {ujt (.)} at any time
t can take values is time-varying, denoted by Ut and hence, a
Dynamic Programming formulation of the sensor scheduling
problem has to be time varying and over a finite horizon. The
finite time DP problem can be formulated as follows for all t ∈
H, along with some suitable terminal cost function J(0, χ̄) =
Φ(χ̄):

V (t, χ̄) = min
Ū∈Ut

[∆I(χ̄, Ū) +

∫
I

p(χ̄′/χ̄, Ū)V (t− 1, χ̄′)dχ̄′], (6)

where χ̄ and Ū are the composite information-state and
control-action taking values in the product space of the in-
dividual target information states and the individual sensor
control spaces. Exploring the entire state and control spaces
is essentially impossible in this case owing to the huge
dimensionality of the problem. Further, in this case, the DP
solution is necessarily time varying which complicates the
solution of the DP problem further.

III. MULTI-AGENT INFORMATION SPACE RECEDING
HORIZON CONTROL(I-RHC-M)

In previous work, we have proposed an I-space receding
horizon control approach that involves solving an open loop
stochastic optimization problem at every time step, for the
case of scheduling the measurements of a single sensor. In
this section, we shall extend this approach to the problem of
multiple sensors in the scenario formulated in the previous
section.
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A. The Open Loop optimization Problem

First, we shall look at the open loop optimization problem,
i.e., an optimization problem where the finite horizon cost
function J(χ̄, Ū) is a function of a sequence of a given initial
I-state χ̄ and a sequence of open loop control actions Ū , as
opposed to the feedback control policies considered in the DP
formulation in the previous section (note that we distinguish
the open and closed loop cost functions using J(.) and V (.)
respectively). In particular, we would like to solve the open
loop stochastic optimization problem:

min
{uj

t}

N∑
i=1

J(χi, {uS(i,t)
t }), (7)

where the optimization is over all possible control choices
of every sensor-time 2-tuple (j, t). It behooves us to take
a closer look at the notation above. In the above notation
u
S(i,t)
t denotes the control choices of sensor S(i, t) at time t.

We use this notation because the total reward of the system
can be defined in terms of the individual rewards of the
different targets and it further allows us to extract structure
from the problem. Since sensor S(i, t) may be seeing other
targets j ∈ TS(i,t)(t), we note that S(i, t) = S(j, t) for all
j ∈ TS(i,t)(t). Thus, the choices uS(i,t)

t ∈ T (S(i,t)(t), i.e.,
the sensor S(i, t) can choose to measure any of the targets in
TS(i,t)(t) at time t. Hence, the open loop optimization is to
maximize the reward of the system given the control choices
available to every sensor-time 2-tuple (j, t),and a given initial
I-state χ̄ over the finite time horizon H. Note that this is an
open loop optimization problem and does not consider the
control to be a function of the particular information states
that are encountered along an information trajectory.

Next, we consider a randomization of the control choices
available to any given sensor: instead of the control ujt being
deterministic, i.e, the sensor chooses to measure exactly one
of the targets in its FOV at time t, we assume that the sensor
chooses to measure one of the targets in its FOV with a certain
probability. Let us denote the probabilities representing the
randomized policies for every sensor time tuple (j, t) by {πjt,k}
where:

πjt,k = Prob.(ujt = k), (8)

i.e., the probability that the jth sensor at time t chooses to
measure the kth target in its FOV. Compactly, we shall denote
the randomized policy for the sensor time 2-tuple (j, t) by Πj

t .
Also, we shall denote the randomized policies of all the sensor-
time tuples by Π̄ = {Πj

t}. Given the definitions above, the
total reward for target i in following the composite randomized
sensor policy Π̄ = {Πj

t} is given by the following:

J(χi, Π̄) = J(χi, {Πj
t}) =∑

u
S(i,1)
1 ..u

S(i,H)
H

J(χi, u
S(i,1)
1 , · · · , uS(i,h)

H )π
S(i,1)

1,u
S(i,1)
1

...π
S(i,H)

H,u
S(i,H)
H

. (9)

The average above is over all possible choices of uS(i,t)
t for

all possible t ∈ H. Further, the total reward in following the

randomized policy {Πj
t} is then given by:

J(χ̄, Π̄) =

N∑
i=1

J(χi, Π̄). (10)

B. Simulation based Information Gradient Technique

In the following, we shall use gradient ascent to find a
maximum for the total reward of the system. In order to
do this, we first need to evaluate the gradient ∂J

∂Πj
t

for every
sensor-time 2-tuple (j, t). In particular, we can show that the
gradient ∂J

∂πj
t,k

is given by the following:

∂J

∂πjt,k
=∑

l∈T j(t)

∑
u
S(l,1)
1 ...u

S(l,H)
H

J(χl, u
S(l,1)
1 , .., u

S(l,t)
t = j, .., u

S(l,H)
H )

π
S(l,1)

1,u
S(i,1)
1

....π
S(l,H)

H,u
S(l,H)
H

. (11)

To see why, note that Πj
t explicitly appears only in the reward

expressions of the targets that are in the FOV of sensor j
at time t, namely T j(t). Hence, the gradient only involves
contributions from these targets. Further, note that for any l ∈
T j(t) , by definition S(l, t) = j. Hence, the above expression
implies that the gradient of the total reward with respect to
the probability that the sensor-time pair (j, t) measures the
kth target in its field of view is given by the average cost of
the information-trajectories of the targets in T j(t), given that
sensor j at time t actually chooses to measure the kth object
in its FOV, i.e.,

∂J

∂πjt,k
= δJ (j,t)(Π̄, ujt = k), (12)

where

δJ (j,t)(Π̄, ujt = k) =∑
l∈T j(t)

∑
u
S(l,1)
1 ...u

S(l,H)
H

J(χl, u
S(l,1)
1 , .., u

S(l,t)
t = j, ..., u

S(l,H)
H )

π
S(l,1)

1,u
S(i,1)
1

....π
S(l,H)

H,u
S(l,H)
H

, (13)

i.e., the average reward of the information trajectories of the
targets in in T j(t), given ujt = k and all other sensor-time pairs
(j′, t′) stick to their randomized policies Πj′

t′ . The gradient
ascent algorithm is the following:

Πj
t = PP [Πj

t + γ
∂J

∂Πj
t

], (14)

where PP [.] denotes the projection of a vector onto the space
of probability vectors P , and γ is a small step size parameter.
Note that the policy update for the randomized policy of the
sensor-time pair (j, t) need not be a probability vector and
hence, the necessity of the projection operator PP [.] in the
above expression.
Let us also define the following reward function:

J (j,t)(χ̄, Π̄) =
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∑
l∈T j(t)

∑
u
S(l,1)
1 ...u

S(l,H)
H

J(χl, u
S(l,1)
1 , .., u

S(l,H)
H )

π
S(l,1)

1,u
S(i,1)
1

....π
S(l,H)

H,u
S(l,H)
H

. (15)

The above is the total information gain of the targets in the
FOV of sensor j at time t given that we follow the policy
Π̄ = {Πj

t}. We shall come back to this reward later on in
this section when we provide a game theoretic interpretation
of the technique presented here. Of course, implementing the
deterministic gradient ascent algorithm above entails averaging
over multiple realizations of the information trajectories and
sensor control sequences. Instead, we use a stochastic gradient
ascent technique utilizing only one sample realization of the
information trajectory. In particular, we have the following
update rule:

Πj
t = PP [Πj

t + γ
∂̂J

∂Πj
t

], (16)

where

∂̂J

∂πjt,k
= J (j,t))(ω) ifujt = k

= 0, o.w. (17)

where ω represents a sample realization of the information
process, and J (j,t)(ω) represents the information gain of
the targets in T j(t) for that particular realization of the
information process.

We make the following remarks about the structure of
the problem that allows us to extract significant variance
reduction in the gradient estimates as well as a distributed
implementation of the gradient algorithm.

Remark 1. Variance Reduction: The variance of the gradient
estimate is due to two reasons: 1) the randomness of the target
information trajectories and 2) the randomness of the sensor
policies. The stochastic gradient technique has structure that
allows us to alleviate both to a large extent. The variance of
the estimate ∂̂J

∂Πj
t

is reduced by orders of magnitude since we

need only simulate the I-trajectories of the objects in T j(t) in
order to obtain an estimate as opposed to having to simulate
the I-trajectories of all the objects. Also, note that the gradient
only depends on the sensor-time tuples Π

S(l,τ)
τ , for all l ∈

T j(t) and τ ∈ H. Hence, we need not simulate the policy of
every sensor-time pair, only Π

S(l,τ)
τ as defined above, thereby

further reducing the variance of the gradient estimate.

Remark 2. Distributed Implementation: The remark above
also tells us as to how to obtain a distributed implementation
of the gradient ascent algorithm. Suppose that we have a CPU
for every sensor-time tuple (j, t). This processor evaluates the
gradient ∂J

∂Πj
t

, and from the above remark, it follows that the
CPU need only know the policies of the sensor time tuples
Π
S(l,τ)
τ , l ∈ T j(t) and τ ∈ H, in order to evaluate the

gradient. Thus, the CPU for the sensor-time pair (j, t) need
only be connected with the processors for the sensor-time pairs
(S(l, τ), τ), where l ∈ T j(t) and τ ∈ H, i.e, the processor

need only know the policies of the sensor-time pairs that affect
the information reward for the targets within T j(t), the FOV
of sensor j at time t. This allows for a sparse connection
graph among the processors thereby facilitating a distributed
implementation of the gradient ascent algorithm.

Finally, we examine the effect of the known S(i, t) function
on the simulation based optimization problem presented above.
Due to the stochasticity of the system, there are bound to be
cases when: 1) a target that is predicted to be in the FOV of
a sensor is not there, and 2) a target that is not predicted in
the FOV is actually there. The first case implies that there is
a negative reward to the sensor if it makes a measurement of
an object that is not in its FOV since this leads to a loss of
information regarding the system and therefore, the gradient
based technique wold not choose such an action if the target
does not happen to be in the FOV of the sensor frequently.
The second case implies that the sensor will never make a
measurement of the unforeseen target. This, of course, implies
that the policy might be non-optimal since the sensor does not
consider the unforeseen target, however, in our opinion, this is
a small price to pay for keeping the problem computationally
tractable and amenable to a solution procedure.

C. Convergence

The stochastic information gradient algorithm is guaranteed
to converge to one of the set of Kuhn-Tucker points of
the function J(χ̄, {Πj

t}) with the constraints being that the
randomized policy for every sensor-time pair (j, t), Πj

t needs
to be a probability vector. The proof is essentially the same
as that of the stochastic optimization problem in the I-RHC
technique, and thus, we only state the result in the following
without a proof.

In the following we drop all reference to the initial I-state
χ̄ in the optimization problem for J(χ̄, Π̄) and refer to the
function as only J(Π̄). The gradient of the function J(.) with
respect to Π̄ is denoted by G(Π̄). Let {qi(Π̄) ≤ 0} denote
the inequality constraints on the problem for some i = 1, ...K
and hi(Π̄) = 0 denote the equality constraints for some i =
1, · · ·L. The inequality constraints are all linear and are of the
form 0 ≤ πjt,k ≤ 1 for all t ∈ H, sensors j and relevant choices
of sensor j at time t, k ∈ T j(t). The equality constraints are
linear and of the form

∑
k π

j
t,k = 1 for all t ∈ H and all

sensors j. However, note that the total reward function J(χ̄, Π̄)
is multilinear and in general, can have multiple local minima.
Let the compact set defined by the constraints above, the space
of stochastic policies, be denoted by P . Let us denote the set
of stationary points of J(.) by S where

S =

{Π̄ : G(Π̄)−
∑
i

λi∇qi(Π̄)−
∑
j

µj∇hi(Π̄) = 0, λi ≥ 0}, (18)

where λi = 0 whenever qi(Π̄) < 0 and λi ≥ 0 otherwise. Note
that the set S is the collection of all the Kuhn-Tucker (K-T)
points of the function J(Π̄). The set is non empty since J(Π̄)
is continuous and the set P of stochastic policies is compact
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and therefore, the function will attain its extrema in P . More-
over, the set Si can be decomposed into disjoint, connected
and compact subsets S such that J(Π̄) = constant = Ci
over each Si ( [38], p. 126), since J(.) and qi(.) are twice
continuously differentiable. Let the step size parameters satisfy
the following conditions:∑

n

εn =∞,
∑
n

ε2n <∞.

Then the following result holds:

Proposition 1. The sequence of policy updates Π̄n → Si,
for some unique i, almost surely, i.e., the stochastic gradient
algorithm (Eq. 16 converges to a set of stationary (K-T) points
such that the value of J(.) on each such set Si is constant.

D. A Game Theoretic Interpretation

The problem of optimizing the total reward function
J(χ̄, Π̄) can also be interpreted in a game theoretic fashion.
Consider every sensor-time pair (j, t) to be an agent and the
randomized policy of the pair, Πj

t , to be the corresponding
mixed strategy of the player (j, t) ( a mixed strategy is a
randomized policy over the choices available to the agent
as opposed to a pure strategy which chooses a unique
alternative). Also, recall the reward of the sensor-time
pair (j, t) given by J (j,t)(χ̄, Π̄) (cf. Eq. 15). This can be
considered as the pay-off of agent (j, t). Thus, the game can
be thought of as one in which every sensor-time pair (j, t)
tries to maximize its payoff J (j,t)(χ̄, Π̄), namely the total
information gain of all the objects in the FOV of sensor j at
time t, i.e., the set T j(t). Since this is a finite player game
with finite number of choices for every agent (j, t), it has
atleast one Nash equilibrium, i.e., a strategy for each pair
(j, t), denoted by Πj∗

t , such that it is the best response to the
randomized policies of all other sensor time pairs (j′, t′).

However, the stochastic information gradient technique pre-
sented previously need not converge to a Nash equilibrium.
The sensor-time policies Πi

t do converge to local maxima
of the individual pay-off functions J (j,t)(., .) w.r.t. Πj

t , while
fixing all other sensor-time policies Πj′

t′ , but not necessarily
a global equilibrium, which would be a Nash equilibrium.
However, note that the goal of our scheduling technique is
to find a maximum of the total reward function J(χ̄, Π̄)
and not necessarily the maximization of the individual payoff
functions J (j,t)(χ̄, Π̄) (or find a Nash equilibrium for the
game). Thus, there is no guarantee that the algorithm would
actually converge to a Nash equilibrium of the game-theoretic
problem.

E. Receding Horizon Control

We have presented a simulation based stochastic gradient
technique to get a minimum of the total reward J(χ̄, Π̄) with
respect to the sensor-time randomized policies Π̄ = {Πj

t}
given some initial information state χ̄. In the following, we
may recursively solve such open loop optimization problems
at every time step given the current information state to

obtain a receding horizon solution to the sensor scheduling
problem for multiple sensors.

Suppose at the initial time the information state of the
system is χ̄0. Then, given this initial information state, we
use the stochastic information gradient technique presented
previously to obtain a maximum for the total information
reward of the system over the randomized policies of every
sensor-time pair (j, t) over some given horizon H. Then, we
implement the first time step of the policies for every sensor
j, and take measurements of the targets as specified by the
control policies at the first time step. Then, we use suitable
filtering techniques to update the information state of the
system to obtain a new information state χ̄′. Then, we set
χ̄0 = χ̄′, and repeat the information gradient technique to
obtain a minimum of the total reward over the next horizon
H given the new information state χ̄′. The technique can be
summarized in the I-RHC-M algorithm below.

Algorithm 1 Algorithm I-RHC-M
• Given initial information state χ̄0 and lookahead horizon
H

1) Use the stochastic information gradient technique
(Eq. 16) to obtain a minimum of the total reward
J(χ̄0, {Πj

t}) over all sensor-time pairs (j, t) over
the horizon H.

2) Output converged T-step policy Πj∗
t for every

sensor-time pair (j, t)
3) Observe noisy measurement z based on the first step

of policy {Πj∗
t } and update information state using

a suitable filter to obtain the new I-state χ1.
4) Set χ0 = χ1 and go to Step 1.

• End

Remark 3. It should be noted that the receding horizon
solution of the multi-sensor scheduling problem is not the
same as the solution of the suitable Dynamic Programming
problem, if the DP problem could be solved. The RHC solution
will furnish a trajectory based feedback solution in that it
is dependent on the current information state of the system.
However, because it is a stochastic scenario, the open loop
optimization performed by the information gradient technique
is not the same as the DP solution, which happens to be
over feedback policies as opposed to open loop policies.
However, as has already been noted, solving the DP problem
is essentially impossible and thus, the RHC solution provides
a long sighted policy that is adjusted based on the current
information state, and which may be expected to outperform
myopic policies.

IV. ILLUSTRATIVE EXAMPLE

In this section, we shall apply the I-RHC-M technique de-
veloped in the previous section to a simple problem involving
multiple simple pendulums that mimics the SSA problem.
Although the problem is relatively simple, nevertheless it is so
high dimensional that no existing technqiue in the literature
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can be used to solve this problem. We shall comment more
about the computational complexity of the current problem
a little later in the section. We consider a set of N simple
(nonlinear) pendulums governed by the stochastic differential
equations:

θ̈i =
g

l
sinθi + wi, (19)

where θi is the angular displacement of the ith pendulum
and wi is a white noise process affecting the motion of the
pendulum. We consider a set of sensors with disjoint FOVs.
The FOV of the jth sensor is defined to be the angular
displacement set F j = [θjl , θ

j
u]. We assume that a sensor j

can measure the state of a pendulum i only when it is its field
of view F j according to the following observation equation:

yji = θ̄i + vj , (20)

where θ̄i denotes the state of the ith pendulum, and vj is a
white noise process corrupting the measurements of the jth

sensor. Note that the above simple problem has the flavor of
the SSA problem, in that each sensor has a bounded FOV, and
can measure a target if and only if its within the FOV. Further,
the pendulum problem is periodic like the SSA problem and
thus, targets periodically leave and enter the FOVs of the
different sensors. For the numerical examples below, we apply
our I-RHC-M technique to a situation where N = 4 and
M = 3, i.e, there are 4 targets and 3 sensors to measure them.
The initial states of the pendulums are chosen in a random
fashion and we assume that the statistics of the process noise
corrupting the dynamics of each pendulum, and the sensor
noise corrupting the measurements of each sensor, are the
same. We assume that the Gaussian assumption holds in this
problem and use extended Kalman filters (EKF) to approxi-
mate the filtered densities, or I-states of the pendulums. The
information gain metric used in this work is the difference in
the determinants of the information (inverse of the covariance)
matrix of the targets and the total information gain is the sum
of the information gains of the different targets. The state space
of each pendulum is 2 dimensional. Given that the Gaussian
approximation holds, the I-state of every pendulum can be
specified by its mean and covariance and hence, the I-state of
each pendulum is 6 dimensional. Thus, given 4 pendulums,
the joint state space of the problem is 24 dimensional. Also,
the control set is finite and is equal to 43 = 64. Of course,
the structure of the problem implies that the actual number of
choices that any sensor has is far fewer than 4. Also, note that
the observation space is continuous. Thus, the DP problem that
needs to be solved to tackle the above problem resides in a 24
dimensional state space and consequently, none of the existing
techniques can solve such a high dimensional problem, given
even the extensive computing resources available today (the
highest dimensional DP problem that can be solved is usually
6 to 8 dimensional). Thus, even this simple example, shows
the degree of computational complexity that is inherent in
the problem and to the best of our knowledge, the I-RHC-
M procedure is the only one that is capable of tackling such
problems.

The results of our numerical simulations are showed in

Fig. 1. Performance of the I-RHC-M algorithm in the average case scenario

Fig. 2. Performance of the I-RHC-M algorithm in the best case scenario

Figs. 1 and 2. For comparison, we chose a greedy policy
as it is the only other technique, other than the I-RHC-M
technique, that scales to high dimensional problems such as
the one considered in this paper. The I-RHC-M technique had
a lookahead horizon of 10 timesteps and the information gains
were evaluated over a total time horizon of 20 timesteps.
In Fig. 1, we show the average gain/ loss of the I-RHC-M
method, averaged over three runs of the I-RHC-M technique,
over that of the greedy policy, for twenty different initial
conditions, i.e., we run the I-RHC-M technique three different
times for each initial condition and compare the average
information gain over these runs to the information gain of
the greedy policy. Note that the I-RHC-M policies will, in
general, be different for different runs due to the stochasticity
of the algorithm. In Fig.2, we compare the information gain
of the best of the three I-RHC-M runs to the information
gain of the greedy policy. Note that there is no guarantee
that the I-RHC-M policy can beat the greedy policy, atleast
theoretically. However, as can be seen from the plots, the
I-RHC-M technique does beat the greedy policy most of
the time. From the above plots, it was found that the I-
RHC-M technique provided an improvement of approximately
13% over the greedy policy in the averaged case, and an
improvement of 20% in the best of three case. If the cost
function used is a product of the information gains for the
individual oscillators, then the information gain obtained by
the I-RHC-M technique over the greedy policy is much higher
(it is almost 10 times better in that case). However, using
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the product gain function implies that the parallelizability and
variance reduction properties of the technique no longer hold.
To solve this issue, we can look at the logarithm of the product
of information gain as our objective function, in which case the
situation is similar to the case when the objective function is
the sum of information gains, in terms of the parallelizability
and variance reduction properties of the method. Using the
log-product gain function involves some minor changes to the
stochastic gradient update formulas. However, we have still
not obtained results for this case but our conjecture is that we
will be able to realize very high information gains just as in
the case of the product gain function using the log-product
formulation.

V. CONCLUSION

In this paper, we have introduced an information space
receding horizon control technique for multi-agent systems,
termed the I-RHC-M technique, with application to the SSA
problem. The method is based on a simulation based stochastic
gradient technique that is used to solve a finite horizon stochas-
tic optimization problem recursively at every time step, thereby
providing a feedback solution to the problem. We have shown
that the method is highly parallelizable and naturally inherits
a variance reduction property owing to its structure. We have
also shown that the method is capable of handling very high
dimensional continuous state and observation space problems
for multi-agent systems that no other existing technique can
claim to solve. We have tested our technique on a simple
example, which is nonetheless computationally intractable for
other existing solution techniques, and have shown that the
method achieves significant improvement over a greedy policy
(the only other computationally viable strategy). In the future,
we shall concentrate on developing the “log-product” version
of the technique which we believe will give us information
gains commensurate with the “product” information gain case
while inheriting the parallelizability and variance reduction of
the “sum” information gain case.
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