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Abstract— This paper extends the concept of probabilistic

completeness defined for the motion planners in the absence

of noise, to the concept of “probabilistic completeness under

uncertainty” for the motion planners that perform planning

in the presence of uncertainty. According to the proposed

definition, an approach is proposed to verify the probabilistic

completeness under uncertainty. Finally, it is shown that the

sampling-based method FIRM [1] is a probabilistically complete

algorithm under uncertainty.

I. INTRODUCTION

Motion planning for a moving object in the presence of
obstacles is one of the main challenges in robotics, and has
attracted immense attention over the last two decades [2], [3],
[4]. Sampling-based methods are one of the successful meth-
ods in solving many planning problems. Sampling-based
methods were initially developed for the motion planning in
the absence of noise, (e.g., [5], [6], and [7]), and later were
generalized to motion planning methods in the presence of
the uncertainty (e.g., [1], [8], [9], [10]).

Due to the success of sampling-based methods in many
practical planning problems, many researchers have investi-
gated the theoretical basis for this success. However, almost
all of these investigations have been done for algorithms
that are designed for planning in the absence of uncertainty.
The literature in this direction falls into two categories: path
isolation-based methods and space covering-based methods.

Path isolation-based analysis: In this approach, one path
is chosen, and it is tiled with some sets such as �-balls
in [11] or sets with arbitrary shapes but strictly positive
measure in [12]. Then the success probability is analyzed by
investigating the probability of sampling in each of the sets
that tile the given path, in the obstacle-free space. Methods
in [11], [12], [13], and [14] are among the methods that
perform path isolation-based analysis of planning algorithm.

Space Covering-based analysis: In the space covering-
based analysis approach, the adequate number of sampled
points to find a successful path is expressed in terms of a
parameter �, which is a property of the environment. A space
is �-good, if every point in the state space can at least be
connected to an � fraction of the space, using local planners.
Methods [15] and [16] are among these methods.

These methods are developed for the case that the solution
of planning algorithm is a path. However, in the presence of
uncertainty, the concept of “successful path” is no longer

A. Agha-mohammadi and N. Amato are with the Dept. of Com-
puter Science and Engineering and S. Chakravorty is with the Dept.
of Aerospace Engineering, Texas A&M University, TX 77843, USA.
Emails: aliagha@tamu.edu, chakrav@neo.tamu.edu, and
amato@tamu.edu

meaningful, because on a given path, different policies may
result in different success probabilities, some interpreted as
successful, some not. Thus, since the planning algorithm
returns a policy instead of a path, the success has to be
defined for a policy. This paper extends these concepts to
probabilistic spaces, i.e., to sampling-based methods con-
cerning planning under uncertainty. We define the concept
of successful policy and the concept of globally successful
policy and formulate them rigorously.

Accordingly, we generalize the conventional concept of
“probabilistic completeness” defined for motion planning
methods in the absence of uncertainty to the concept of
“probabilistic completeness under uncertainty”, defined for
the planners in the presence of uncertainty. According to
this definition, we prove that Feedback controller-based

Information-state Roadmap Method (FIRM), the planning
algorithm proposed in [1], is a probabilistically complete
algorithm. Also, the procedure used in this proof, provides
some tools that can be used in analyzing planning methods
under uncertainty.

In the next section, we first review the general formulation
for the planning problem under uncertainty, and briefly
explain the FIRM method [1]. In Section III we extend the
concept of probabilistic completeness and define the concept
of “probabilistic completeness under uncertainty”. In Section
IV, it is proved that FIRM [1] algorithm is probabilistically
complete under uncertainty. We conclude the paper in section
VI.

II. MOTION PLANNING UNDER UNCERTAINTY

Mainly, uncertainty in planning originates from the lack
of exact knowledge on robot’s motion model, robot’s sensing
model, and environment model, which are referred to as
motion uncertainty, sensing uncertainty, and map uncertainty,
respectively. In this paper, we focus on the motion and
sensing uncertainty, but some of the concepts are extendible
to the problems with a map uncertainty. Markov Decision
Process (MDP) problem and Partially Observable MDP
(POMDP) are the most general formulations, respectively, for
the planning problem under motion uncertainty and for the
planning problem under both motion and sensing uncertainty.

While in the deterministic setting, we seek an optimal path
as the solution of motion planning problem, in the stochastic
setting we seek an optimal feedback (mapping) π as the
solution of motion planning problem. π as the solution of
MDP, is a mapping from the state space to the control space
and π as the solution of POMDP is a mapping from the
belief space to the control space. In the rest of paper, we



focus on the POMDPs, as it is more general. However, all
statements can be easily stated for the MDPs.

A. POMDP

In solving POMDP problems, we deal with following
components:
• X is the state space of the problem, containing all possible

states of the system, X ∈ X.
• U is the control space of the problem, containing all

possible control inputs, u ∈ U.
• Z is the observation space of the problem, containing all

possible observation, z ∈ Z.
• bk is the belief at the k-th step, which is the pdf of system

state condition on the obtained measurements up to k-th
time step, bk = p(Xk|z0:k).

• B is the belief space of the problem, containing all
possible beliefs, b ∈ B.

• p(X �|X,u) and p(b�|b, u) are the state and belief transition
pdf’s, respectively. Also, p(z|X) is the observation pdf
condition on the system’s state.

• c(b, u) is the cost of taking control u at belief b.
• π(·) : B → U is the solution of POMDP, which is

a mapping (feedback) that assigns a control action for
every belief in belief space. It is well known that the
infinite horizon POMDP problem can be cast as a belief
MDP problem [4], [17], whose solution is obtained by
solving the following stationary Dynamic Programming
(DP) equation for all b on the belief space B [4], [17]:

J(b)= min
u

{c(b, u) +
�

B
p(b�|b, u)J(b�)db�}, (1a)

π(b) = argmin
u

{c(b, u) +
�

B
p(b�|b, u)J(b�)db�}, (1b)

• J(·) : B → R is called the cost-to-go (or value) function,
that assigns a cost-to-go for every belief in belief space.

• Π is the set of admissible policies. The mapping π lives
in the function space and can have extremely complex
formats. Thus, often, in solving POMDPs the set of
admissible policies, i.e., Π is chosen as a rich subset of
this huge space, on which the optimization in Eq.(1) is
carried out.

B. FIRM

In this subsection, we focus on the FIRM framework
[1] for planning under uncertainty, and briefly explain it.
Solving POMDPs over continuous state, control, observation,
and belief spaces, and finding the best feedback π ∈ Π
is a challenge, in particular in the presence of state con-
straint, e.g. obstacles in the environments. Inspired by the
sampling-based methods, FIRM samples local controllers,
whose combination results in a feedback controller π ∈ Π
that approximates the solution of Eq.(1), over continuous
spaces in the presence of obstacles.

The FIRM graph is a generalization of the PRM graph,
whose nodes are small subsets of belief space and whose
edges are Markov chains induced by feedback controllers.
As a result, planning on FIRM is a Markov Decision Process

(MDP) in the belief space, which is defined on FIRM nodes
(a finite set), and thus it can be solved using standard
Dynamic Programming (DP) techniques [17].

In the following, we briefly explain the FIRM framework
and the elements used in its construction:
• F and Xfree denote the obstacles and obstacle-free parts

of the state space, such that F ∩ Xfree = ∅ and F ∪
Xfree = X.

• V = {vi}Nv
i=1 and E = {eij} are the set of nodes and

edges of the PRM that underlies FIRM. All PRM nodes
and edges lie in Xfree.

• µj(·;vj) : B → U is the j-th local controller,
parametrized by the j-th PRM node vj . Local controller
is a mapping from belief space to the control space.

• M = {µj}Nv
j=1 is the set of sampled local controllers, in

FIRM. Note that the number of local controllers is the
same as the number of PRM nodes.

• M(i) = {µj ∈ M|∃eij ∈ E} denotes the set of
local controllers that can be invoked from the node Bi.
Apparently, M(i) ⊂ M.

• Xh = X × B is referred to as hyper-state (or h-state)
space that contain all possible h-states (state-belief pairs),
X = (X, b) ∈ Xh.

• pµ(X �|X), pµ(b�|b), and pµ(X �|X ) are the transition pdf’s
induced by the local controller µ, over the state, belief,
and h-state spaces, respectively. In this paper, pµ(·|·) and
p(·|·, µ) are used interchangeably.

• Pn(·|b, µ) : σ(B) → R≥0 is the probability measure over
the belief space, induced by the local controller µ after
n steps, starting from the belief b. Set σ(B) is the Borel
sigma-algebra of the belief space B.

• Pn(·|X , µ) : σ(Xh) → R≥0 is the probability measure
over the h-state space, induced by the local controller µ
after n steps, starting from the h-state X . Set σ(Xh) is
the Borel sigma-algebra of the h-state space Xh.

• Bj is the j-th FIRM node, which is a subset of belief
space, i.e., Bj ⊂ B and Bj ∈ σ(B). The condition on
Bj , in designing a FIRM, is that Bj has to have non-zero
probability measure under µj after some finite number of
steps N < ∞, i.e. Pn(Bj |b, µj) > 0, for n ≥ N and for
all b. Note that also Bi ∩Bj = ∅ for i �= j.

• V is the set of all FIRM nodes, i.e., V = {Bi}Nv
i=1 and

thus Bi ∈ V.
• P(Bj |b, µj) =

�∞
n=0 Pn(Bj |b, µj) is the probability of

landing in Bj before hitting obstacles F , and P(F |b, µj)
is the probability of colliding with obstacles F before
landing in Bj , both under the controller µj taken at b.

• Cµj
(b) represents the expected cost of invoking local

controller µj(·) starting at belief state b until the local
controller stops executing. Mathematically:

Cµj

(b) =
T�

t=0

c(bt, µ
j(bt)|b0 = b), (2)

T µj

(b) = inf
t
{t|bt ∈ Bj , b0 = b}. (3)

where T µj
, which is a function of initial belief, is a
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random stopping time denoting the time at which the
belief state enters the node Bj under the controller µj .

• bis is a particular point in Bi. For a sufficiently small Bi,
any point in Bi can be considered as bis. If Bi is a ball,
usually the centre point is chosen as the bis.

• πg(·) : V → M is a mapping over the FIRM graph, from
FIRM nodes into the set of local controllers.

Jg(Bi) = min
M(i)

Cµj

(Bi) + J(F )P(F |Bi, µ
j)

+ Jg(Bj)P(Bj |Bi, µ
j), (4a)

πg(Bi) = argmin
M(i)

Cµj

(Bi) + J(F )P(F |Bi, µ
j)

+ Jg(Bj)P(Bj |Bi, µ
j), (4b)

where, P(Bj |Bi, µj) := P(Bj |bis, µj) and P(F |Bi, µj) :=
P(F |bis, µj). Also, Cµj

(Bi) := Cµj
(bis).

• Jg(·) : V → R is the cost-to-go function over the FIRM
nodes, that assigns a cost-to-go for every FIRM node
Bi. J(F ) is some suitable user-defined cost for hitting
obstacles.

• π is the overall feedback generated using FIRM, by
combining the policy πg on the graph and the local
controllers µjs. When a local controller µ is chosen using
πg , the local controller starts generating the controls based
on the current belief at each time step, until the belief
reaches the corresponding stopping region, denoted by
B(µ). For example if the controller µj is chosen, the
stopping region is Bj , i.e., Bj = B(µj). In the presence
of obstacles, the collision with obstacles, i.e., X ∈ F ,
stops the execution of controllers in all levels.

π : B → U, (5)

uk=π(bk)=

�
µk(bk), µk = πg(bk), if bk ∈ B(µk−1)

µk(bk), µk = µk−1, if bk /∈ B(µk−1)

where, µk ∈ M denotes the active local controller at time
step k. The initial local controller is:

µ0(·) =






argminM Cµj
(b0) + J(F )Pµj

(F |b0)
+ J(Bj)Pµj

(Bj |b0), if b /∈
�

m Bm

πg(b0), if b ∈
�

m Bm

(6)

• Π is the set of admissible policies. It is worth noting the
mapping π is parametrized by the PRM nodes, i.e., V .
Thus, more rigorously, it can be written as π(·;V). For a
given environment, there are infinite possible PRM graphs
(and thus V’s), any of which gives rise to a FIRM policy
π. The set of all these possible FIRM policies are referred
to as “admissible policies” and is denoted by Π.
The generic algorithms for offline construction of FIRM

and online planning on FIRM are presented in Algorithms
1 and 2, respectively. The concrete instantiations of these
algorithms for the Gaussian belief space are given in [1].

We would also like to quantify the quality of the solution
π. To this end, we require the probability of success of
the policy πg at the higher level Markov chain on Bi’s

Algorithm 1: Generic Construction of FIRM (Offline)
1 Construct a PRM with nodes V = {vj} and edges
{eij};

2 For each PRM node vj , design a controller µj and
compute its corresponding reachable FIRM node Bj ;

3 For each Bi and µj ∈ M(i), compute the cost, collision
probabilities and transition probabilities associated with
going from Bi to Bj ;

4 Solve the FIRM MDP to compute feedback πg over
FIRM nodes, and compute the π accordingly.

Algorithm 2: Generic planning on FIRM (Online)
1 Given an initial belief b0, invoke the controller µ0(·) in

Eq.(6), to absorb the robot into some FIRM node Bi;
2 Given the system is in set Bi, invoke the higher level

feedback policy πg to choose the lower level feedback
controller µj(·) = πg(Bi);

3 Let the node-controller µj(·) execute until absorption
into the Bj or failure;

4 Repeat steps 2-3 until absorption into the goal node
Bgoal or failure.

given by Eq.(4b). The DP in Eq.(4b) has Nv + 1 states
{S1, S2, · · · , SNv+1} that can be decomposed into three
disjoint classes: the goal class S1 = Bgoal, the failure class
S2 = F , and the transient class {S3, S4, · · · , SNv+1} =
{B1, B2, · · · , BNv} \ Bgoal. The goal and failure classes
are recurrent classes of this Markov chain. As a result, the
transition probability matrix of this higher level Nv+1 state
Markov chain can be decomposed as follows [18]:

P =




Pg 0 0
0 Pf 0
Rg Rf Q



 . (7)

The (i, j)-th component of P represents the transition prob-
ability from Sj to Si, i.e., P[i, j] = P(Si|Sj ,πg(Sj)). More-
over Pg = P(S1|S1,πg(S1)) = 1 and Pf = P(F |F, ·) = 1,
since goal and failure classes are recurrent classes, i.e., the
system stops once it reaches the goal or it fails. Q is a
matrix that represents the transition probabilities between
belief nodes Bi in transient class, whose (i, j)-th element
is Q[i, j] = P(Si+2|Sj+2,πg(Sj+2)). Vectors Rg and Rf

are (Nv − 1) × 1 vectors that represent the probability of
the transient nodes V \ Bgoal getting absorbed into the
goal node and the failure set, respectively, i.e., Rg[j] =
P(S1|Sj+2,πg(Sj+2)) and Rf [j] = P(S2|Sj+2,πg(Sj+2)).
Then, it can be shown that the success probability from any
desired node Si ∈ V \Bgoal is given by the i-th component
of the vector Ps [18]:

P(success|Si,π) = ΓT
i−2Ps, Ps = (I −Q)−1Rg. (8)

where Γi is a column vector with all elements equal to zero
but the i-th element, which is one.
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Thus, given that we can suitably construct the local con-
trollers µi(·), the sets Bi, evaluate the transition costs Cµi

(·)
and the transition probabilities Pµi

(·|·), we can transform
the intractable DP in Eq.(1) corresponding to the original
POMDP into the solvable DP in Eq.(4) corresponding to
the FIRM. A procedure for constructing the local controllers
µi(·), sets Bi, costs Cµi

(·) and probabilities Pµi
(·|·) is

presented in [1].

III. PROBABILISTIC COMPLETENESS UNDER
UNCERTAINTY

We start by reviewing the definition of success and prob-
abilistic completeness in the deterministic case, and then we
extend these definitions to the stochastic case.

Success in the deterministic case: In the deterministic case,
such as conventional PRM, the outcome of the planning
algorithm is a path. Thus, success is defined for paths: For
a given initial and goal point, a successful path is a path
connecting the start point to the goal point, which entirely
lies in the obstacle-free space.

Probabilistic completeness in the deterministic case: In the
absence of uncertainty, a sampling-based motion planning
algorithm is probabilistically complete if by increasing the
number of samples, the probability of finding a successful
path, if one exists, asymptotically approaches to one.

Difference between deterministic and probabilistic case:
In the presence of uncertainty, success cannot be defined
for a path and it has to be defined for a policy. Indeed,
on a given path, different policies may result in different
success probabilities. Moreover, under uncertainty, one can
only assign the probability for reaching goal. Thus, to define
a success for a policy we consider a threshold pmin and
decide about success or failure accordingly.

Successful policy: In the presence of uncertainty, the
solution of the planning algorithm is a policy (feedback)
within the class of admissible policies. Therefore, success
is defined for policies: For a given initial belief b0 and
goal region Bg , successful policy is a policy within the
class of admissible policies under which the probability of
reaching goal from the given initial point is greater than
some predefined threshold pmin. In other words, π ∈ Π is
successful if P(success|b0,π) := P(Bg|b0,π) > pmin.

Feasible initial belief : A belief b0 ∈ B is a feasible
initial belief for class Π, if there exists a policy π ∈ Π
such that P(success|b0,π) > pmin. The set of all feasible
initial beliefs corresponding to a class Π is denoted by
BΠ. It is worth noting that the richer the set of admissible
policies Π, the greater the set of feasible initial beliefs
BΠ. For example, in obstacle-free FIRM with stationary
Linear Quadratic Gaussian (LQG) controllers as the local
controllers, the set of all Gaussian beliefs is a subset of BΠ

[1].
Globally successful policy: Instead of a single initial belief,

we can also define the concept of successful policy for BΠ.
In other words, for a given goal region, a policy π ∈ Π is
globally successful, if the probability of reaching goal from
any belief in BΠ is greater than pmin. In other words, π ∈ Π

is globally successful if P(success|b0,π) = P(Bg|b0,π) >
pmin, ∀b0 ∈ BΠ.

Probabilistic completeness under uncertainty: Probabilis-
tic completeness can be defined based on either one of the
definitions for the successful policy. Suppose there exists
a (globally) successful policy π ∈ Π. Then, a sampling-
based motion planning algorithm is probabilistically com-
plete under uncertainty, if by increasing the number of
samples without bound, the probability of finding a (globally)
successful policy is one. In other words, if there exists
a globally successful policy π ∈ Π, we have following
property:

lim
Nv→∞

P(Bg|b0,π(·;V)) > pmin, ∀b0 ∈ BΠ, (9)

where V = {vi}Nv
i=1.

IV. PROBABILISTIC COMPLETENESS OF FIRM

In this section, we present a result on the probabilistic
completeness of the FIRM. The result and its proof is stated
for the more general case of globally successful policies.
It is worth noting that throughout this section by the word
“continuous”, we mean “Lipschitz continuous”. Also, the
norm � · � is the supremum norm, when it is applied to
functions. If � · � is applied on operators, it stands for the
operator norm [19].

Before stating the main proposition, we introduce some
notation and assumptions that reflects the properties of FIRM
in a more rigorous way.

Assumption 1:

• Local control laws are continuous functions of their
parameters, i.e., for the j-th local controller, the map-
ping µj(·;vj) : B → U is a continuous function in the
parameter vj .

• The transition pdf on h-state, i.e., p(X �|X , u) is a
continuous function of control u, i.e., there exists a c1 <
∞, such that �p(X �|X , u)− p(X �|X , ǔ)� ≤ c1�u− ǔ�.

Based on Assumption 1, the continuity of the transition
probability induced by the local controllers in its parameter
is deduced, i.e., we have the following result:

Proposition 1: There exist c2 < ∞ such that

�p(X �|X , µ(b;v))− p(X �|X , µ̌(b; v̌))� ≤ c2�v − v̌�. (10)
Consider the h-state space Xh = X × B that contains all

possible h-states X = (X, b). The stopping regions in the
belief space {Bi} and the stopping region in the state space
F , both can be extended to the h-state space, respectively
denoted by {Bi} and F , where Bi ⊂ Xh and F ⊂ Xh.

Bj = {(X, b)|X ∈ Xfree, b ∈ Bj}, (11)
F = {(X, b)|X ∈ F, b ∈ B}, (12)
Sj = Bj ∪ F , (13)

where, Sj denotes the entire stopping region under the local
controller µj . Based on these definitions, rephrasing the
condition in FIRM for designing the node regions, we get
the following assumption:
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Assumption 2: We assume that after N < ∞ steps, the
probability of getting absorbed into the stopping region Sj

corresponding to vj is greater than zero under µj , i.e., we
assume for each µj , infX Pn(Sj |X , µj) = β > 0, for all
n > N .
In [1], it is shown how such a regions can be designed when
the local controllers µ are LQG controllers.

Finally, we state the following assumption, in which we
emphasize the fact that as v → v̌, the probability measure
induced by the local controller µ(·;v) over the sets B and B̌
have to converge also. This assumption almost always holds
in practical cases.

Assumption 3: Consider the controllers µ(·;v), and
µ̌(·; v̌), whose corresponding extended absorption regions
are denoted by B and B̌, respectively. We assume that there
exist an r > 0 and c� < ∞, such that for �v − v̌� ≤ r, we
have:

�P1(B � B̌|X , µ)� ≤ c��v − v̌� (14)
where, � is the symmetric difference operator, i.e., B� B̌ =
(B − B̌) ∪ (B̌ − B).

Now, we are ready to state the main proposition:
Proposition 2: Given Assumptions 1, 2, and 3, FIRM is

probabilistically complete under uncertainty.

Proof: We prove this proposition in three steps:
1) Equivalence of completeness and continuity: In the first

step, we show that FIRM is probabilistically complete
under uncertainty, if the probability of success under
the policy π ∈ Π, i.e., P(success|π, b0) is a continuous
function of the underlying PRM nodes, i.e., V =
{vi}Nv

i=1, for all b0 ∈ BΠ.
2) Continuity of success probability: We show that

P(success|π, b0) is continuous wrt V , if the absorption
probabilities P(Bi|µi, b) is continuous wrt vi, for all i
and b.

3) Continuity of absorption probabilities: We show that
the absorption probability P(Bi|µi, b) is continuous
wrt vi, for all i and b, given the transition proba-
bility p(X �|X , µi(b)) is continuous wrt vi, i.e., given
Eq.(10).

In the following subsections, we prove above steps, in the
mentioned order.

A. Equivalence of completeness and continuity

Based on the definition of probabilistic completeness un-
der uncertainty, if there exist a globally successful policy
π̌, FIRM has to find a globally successful policy π as the
number of FIRM nodes increases unboundedly. Thus, we
start by assuming that there exists a globally successful
policy π̌ ∈ Π. Since each policy in Π is parametrized by
a PRM graph, there exists a PRM with nodes V̌ = {v̌i} that
parametrizes the policy π̌.

In the state space, for every node v̌i, consider a ball Ω̌i

with radius δ > 0, centred at v̌i. Now, suppose there exists
a PRM, with the set of nodes V = {vi}, where vi ∈ Ω̌i, i.e.
�vi−v̌i� ≤ δ for all i. Let us denote the policy parametrized
by V as π. Since π̌ is a globally successful policy, we know

P(success|π̌, b0) > pmin for all b0 ∈ BΠ. Thus, we can
define � = P(success|π̌, b0) − pmin > 0. If the probability
of success P(success|π̌, b0) is a continuous function of the
underlying PRM nodes V � = {v̌i}, then there exist a δ,
for which we have |P(success|π̌, b0)−P(success|π, b0)| < �,
and thus, P(success|π, b0) > pmin. Therefore, for sufficiently
small δ > 0 the obtained policy π is a successful policy.

Since δ > 0, the regions Ω̌i are the sets with strictly
positive probability measures under the sampling algorithm
of PRM, e.g., uniform sampling. Thus, starting with any
PRM, if we increase the number of nodes, a PRM node
will eventually be chosen at every Ω̌i, with probability one.
Therefore the policy constructed based on these nodes will
have a success probability greater than pmin. Thus, FIRM is
probabilistically complete.

B. Continuity of success probability

Given that P(Bi|µi, b) is continuous wrt vi, for all i, we
want to show that P(success|π, b0) is continuous wrt all vi.
First, let us look at the structure of the success probability.

P(success|π, b0)=P(B(µ0)|µ0, b0)P(success|π, B(µ0)), (15)

where, µ0 is computed using Eq.(6). The term
P(B(µ0)|µ0, b0) in the right hand side of Eq.(15) is
continuous because the continuity of P(Bi|µi, b) for all i is
assumed in this subsection. Thus, we only need to show the
continuity of the second term in Eq.(15). Without loss of
generality we can consider Bi = B(µ0). Then, it is desired
to show that P(success|π, Bi) is continuous wrt vi for all i.

As we saw in Section II-B, the probability of success from
the i-th FIRM node is as follows:

P(success|π, Bi) = ΓT
i (I −Q)−1Rg, (16)

Moreover, we can consider Bg = BN without loss of
generality; then, the (i, j)-th element of matrix Q is Q[i, j] =
P(Bi|Bj ,πg(Bj)), and the j-th element of vector Rg is
Rg[j] = P(BN |Bj ,πg(Bj)). Since we considered the Bj

as the stopping region of the local controller µj , we have:

P(Bj |Bi, µ
l) = 0, if l �= j. (17)

Therefore, all the non-zero elements in the matrices Rg and
Q are of the form P(Bj |Bi, µj). Thus, Given the continuity
of P(Bj |b, µj), the transition probability P(Bj |Bi, µj) are
continuous and the matrices Rg and Q are continuous.
Therefore, P(success|π, Bi) and thus P(success|π, b0) are
continuous wrt underlying PRM nodes.

C. Continuity of absorption probabilities

The absorption probability into the FIRM nodes are com-
puted through solving following integral equation that comes
from the law of total probability:

P(Bj |X , µj) =

�

Xh

pµ
j

(X �|X )P(Bj |X �, µj)dX �, (18)

with the conditions:

P(Bj |X , µj) =

�
1, if X ∈ Bj

0, if X ∈ F
. (19)
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Plugging the condition equations into the Eq.(18), we can
write Eq.(18) as follows:

P(Bj |X , µj) =�

Bj

pµ
j

(X �|X )dX � +

�

Sj

pµ
j

(X �|X )P(Bj |X �, µj)dX �. (20)

Henceforth, we drop the index j to unclutter the expres-
sions, and the coming results hold for any j. Thus, we can
write:

P(B|X , µ)=

�

B

pµ(X �|X )dX �+

�

S

pµ(X �|X )P(B|X �, µ)dX �

= R(X ) +TS [P(B|·, µ)] (X ), (21)

where, the operator TS and the function R(X ) are defined
as:

TS [f(·)] (X ) :=

�

S

pµ(X �|X )f(X �)dX �, (22)

R(X ) :=

�

B

pµ(X �|X )dX �. (23)

The equation in Eq.(21) is an inhomogeneous Fredholm
equation of second type. The solution of this equation can
be expressed as a Liouville-Neumann series [19]:

P(B|X , µ) =
∞�

n=1

Tn
S [R(·)] (X ). (24)

Before proceeding with proof of continuity of absorption
probability, we state the following lemma on the operator
TS , whose proof is given in Appendix 1.

Lemma 1: According to the Assumption 2, we have:






�Tn
S� ≤ 1, n < N

�Tn
S� ≤ α < 1, n ≥ N

�∞
n=0 �Tn

S� ≤ c < ∞.

(25)

Note that since here � · � acts on the operators, it stands for
the operator norm [19].

Corollary 1: Series
�∞

n=0 T
n
S [R] is a convergent series,

and therefore, we can define the resolvent operator (I −
TS)−1[R] =

�∞
n=0 T

n
S [R], where �(I −TS)−1� ≤ c < ∞.

According to the Corollary 1, the success probability can
be written using the defined resolvent operators as:

P(B|X , µ) = (I −TS)
−1[R(·)](X ). (26)

To show P(B|X , µ) is continuous wrt v, we perturb v
to some v̌, such that �v − v̌� < r. The local controller
associated with node v̌ is referred to as µ̌, whose successful
absorption region is denoted by B̌ and stopping region
is Š . Similarly the corresponding transient operator and
recurrent function are referred to as ŤŠ and Ř. Finally, the
success probability associated with the perturbed node v̌ is
P(B̌|X , µ̌). To shorten the statements, we refer to P(B|X , µ)

and P(B̌|X , µ̌) respectively by P(X ) and P̌(X ). As a result
of node perturbation, the success probability is perturbed as:

P(B|X , µ)−P(B̌|X , µ̌) :=P−P̌=R+TS [P]−Ř−ŤŠ [P̌]

=R−Ř+TS [P]−TS [P̌]+TS [P̌]−TŠ [P̌]+TŠ [P̌]−ŤŠ [P̌]

=(R−Ř)+TS [P− P̌]+(TS−TŠ)[P̌]+(TŠ−ŤŠ)[P̌] (27)

where

TŠ [f(·)] (X ) :=

�

Š

pµ(X �|X )f(X �)dX �. (28)

Let us define the operators T∆S := (TS−TŠ) and ∆TŠ :=
(TŠ − ŤŠ). Now, based on Corollary 1, we can write:

P− P̌ = (I −TS)
−1

�
R− Ř+T∆S [P̌] +∆TŠ [P̌]

�
, (29)

and thus following inequality holds on the supremum norm
of the perturbation of the absorption probability:

�P− P̌�
≤ �(I −TS)

−1�
�
�R− Ř�+ �T∆S [P̌]�+ �∆TŠ [P̌]�

�

≤ c
�
�R− Ř�+ �T∆S [P̌]�+ �∆TŠ [P̌]�

�

= c (�K1(X )�+ �K2(X )�+ �K3(X )�) , (30)

where, K1(X ) := R(X )−Ř(X ), K2(X ) := T∆S [P̌(·)](X ),
and K3(X ) := ∆TŠ [P̌(·)](X ). In the following we bound
K1, K2, and K3, and thus bound the �P− P̌�, accordingly.
In this process we will use the result, stated in the following
lemma.

Lemma 2: Consider the bounded function 0 ≤ f(X ) ≤ 1,

and kernel k(X �,X ) ≥ 0. Then, for any set A, we have:

�
�

A

k(X �,X )f(X �)dX �� ≤ �
�

A

k(X �,X )dX �� (31)

Proof: Given the properties of f(·) and k(·, ·), we have
k(X �,X )f(X �) ≤ k(X �,X ), for all X and X �. Thus, the
stated result follows from taking integral from both sides
with respect to X � and then taking supremum norm with
respect to X .

1) Bound for K1(X ): The supremum norm of K1(X ) is:

�K1(X )� = �R(X )− Ř(X )�

≤ �
�

B

pµ(X �|X )dX � −
�

B̌

pµ̌(X �|X )dX ��

= �
�

B∩B̌

[pµ(X �|X )− pµ̌(X �|X )]dX �

+

�

B−B̌

pµ(X �|X )dX � −
�

B̌−B

pµ̌(X �|X )dX ��

≤
�

B∩B̌

�pµ(X �|X )− pµ̌(X �|X )�dX �

+ �
�

B−B̌

pµ(X �|X )dX � +

�

B̌−B

pµ̌(X �|X )dX ��

from (10)
≤

�

B∩B̌

c2�v − v̌�dX � + �P1(B � B̌|X , µ)�
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+ �P1(B̌ � B|X , µ̌)�
from (14)
≤ c�2�v − v̌�+ 2c��v − v̌� = c3�v − v̌�, (32)

where, c�2 < ∞ and c3 = c�2 + 2c� < ∞. In the penultimate
inequality, we also used the fact that P1(B̌ − B|X , µ̌) ≤
P1(B̌ � B|X , µ̌) and P1(B − B̌|X , µ) ≤ P1(B � B̌|X , µ)
because B̌ − B ⊆ B̌ � B and B − B̌ ⊆ B � B̌.

2) Bound for K2(X ): We have:

�K2(X )� = �T∆S [P̌]� = �TS [P̌]−TŠ [P̌]�

≤ �
�

S

pµ(X �|X )P̌(X �)dX � −
�

Š

pµ(X �|X )P̌(X �)dX ��

=�
�

S−Š

pµ(X �|X )P̌(X �)dX � −
�

Š−S

pµ(X �|X )P̌(X �)dX ��

≤�
�

S−Š

pµ(X �|X )P̌(X �)dX � +

�

Š−S

pµ(X �|X )P̌(X �)dX ��

=�
�

S�Š

pµ(X �|X )P̌(X �)dX ��
from (31)
≤ �

�

S�Š

pµ(X �|X )dX ��

= �P1(S � Š|X , µ)� ≤ �P1(B � B̌|X , µ)� (33)

= �P1(B � B̌|X , µ)�
from (14)
≤ c��v − v̌�.

The penultimate inequality and equality follow from the
relations S�S � ⊆ B�B� and B�B� = B�B�, respectively.

3) Bound for K3(X ): We have:

�K3(X )� = �∆TŠ [P̌]� = �TŠ [P̌]− ŤŠ [P̌]�

≤ �
�

Š

pµ(X �|X )P̌(X �)dX � −
�

Š

pµ̌(X �|X )P̌(X �)dX ��

= �
�

Š

�
pµ(X �|X )− pµ̌(X �|X )

�
P̌(X �)dX ��

≤
�

Š

�pµ(X �|X )− pµ̌(X �|X )��P̌(X �)�dX �

from (10)
≤

�

Š

c2�v − v̌�dX � = c��2�v − v̌�. (34)

where, c��2 < ∞.
Therefore, based on Eq.(32), Eq.(33), Eq.(34), and

Eq.(30), we can conclude that:

�P(B|X , µ)− P(B̌|X , µ̌)� ≤ c4�v − v̌�, (35)

where c4 = c3+c�+c��2 < ∞, which completes the proof that
absorption probability under the controller µ is continuous
in the PRM node v.

Therefore, based on steps two and three of the proof, we
conclude the success probability is a continuous function
of PRM nodes, i.e., for any � > 0, there exists a δ > 0,
such that if �V − V̌� < δ, then �P(success|b0,π(·;V)) −
P(success|b0, π̌(·; V̌))� < �. Thus, based on the step one

of the proof, the probabilistic completeness of the FIRM is
concluded.

V. DISCUSSION

The basic idea in probabilistic completeness under uncer-
tainty stems from an idea similar to the one in path isolation-
based analysis in planners for deterministic systems. Roughly
speaking, in the path isolation argument for the sampling-
based planners in the absence of uncertainty, if there is a
successful path and a non-zero neighbourhood of this path, in
which every path is successful, we can eventually find a path
in this neighbourhood, by increasing the number of samples,
unboundedly. Similarly, in the presence of uncertainty, if
there is a successful policy, it is parametrized by some
parameters. Thus, if there is exists a non-zero measure
neighbourhood of these parameters in the parameter space,
such that all parameters chosen in this neighbourhood leads
to a successful policy, we can eventually reach a successful
policy, by increasing the number of samples unboundedly
and falling into the target neighbourhood.

In FIRM or similar approaches, such as Generalized
Probabilistic Roadmap Methods (GPRM) [10], policy π is
parametrized by an underlying PRM graph nodes. Therefore,
increasing the number of nodes in the underlying PRM,
we can reach parameters arbitrarily close the parameters
of a successful policy, if one exists, and thus based on
continuity of the success probability in the parameters, we
can eventually get a successful policy, by increasing the
number of PRM nodes, unboundedly.

VI. CONCLUSION

In this paper, we reformulated the sampling-based robot
motion planning problem under uncertainty, in terms of
the local controllers and their interactions. Inspired by the
concept of the probabilistic completeness in the determin-
istic situation, we introduced the concept of probabilistic
completeness under uncertainty. Accordingly, we proposed
a way to approach proving the probabilistic completeness of
the motion planning methods under uncertainty. Finally, we
showed that the FIRM algorithm for motion planning under
uncertainty is a probabilistically complete algorithm.
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APPENDIX I
PROOF OF LEMMA 1

Proof: Let us denote the n-th iterated kernel of TS
as pn(X �|X , µ). Since this iterated kernel is a pdf, we have
pn(X �|X , µ) ≥ 0, ∀X , ∀X �, ∀n. If we denote the domain
of operator TS by D, we know that for all f ∈ D, we have
0 ≤ f(X ) ≤ 1, because f(X ) is the probability of some
given set S under some given controller invoked at point X .
Thus, it cannot be negative or greater than one and based on
lemma 2, we have:

�
�

S

pn(X �|X , µ)f(X �)dX �� ≤ �
�

S

pn(X �|X , µ)dX ��

= �Pn(S|X , µ)� = �1− Pn(S|X , µ)� (36)

Thus, we have

�TS [f ] � = �
�

S

p(X �|X , µ)f(X �)dX �� ≤ �P(S|X , µ)� ≤ 1

Based on the definition of operator norm, we have:

�TS� = sup
f(·)

{�TS [f ]� : ∀f ∈ D, �f� ≤ 1} ≤ 1 (37)

According to Assumption 2, there exists a finite number N ,
such that:

inf
X

Pn(S|X , µ) = β > 0, ∀n > N (38)

Thus, we have

�Pn(S|X , µ)� = 1− β < 1, ∀n > N (39)

Therefore, we can write:

�TN
S [f ] � = �

�

S

pN (X �|X , µ)f(X �)dX ��

≤ �PN (S|X , µ)� ≤ α < 1 (40)

where α = 1 − β, and similar to Eq.(37), we get �TN
S � ≤

α < 1. Thus, we also have:

�TN+1
S � ≤ �TN

S ��TS� ≤ α < 1

and similarly for all n ≥ N , we have:

�Tn
S� ≤ α < 1, ∀n ≥ N

Now, consider the series:
�∞

i=1 �Tn
S�. We can split the sum

to smaller pieces as follows:

∞�

n=1

�Tn
S� =

N�

n=1

�Tn
S�+

∞�

i=1

(i+1)N�

n=iN+1

�Tn
S�

but because �Tn+1
S � ≤ �Tn

S� for all n ≥ N , we have

(i+1)N�

n=iN+1

�Tn
S� ≤ N�TiN

S �

Also, we know

�TiN
S � ≤ �TN

S �i ≤ αi

and thus, we have:
∞�

n=1

�Tn
S� =

N�

n=1

�Tn
S�

� �� �
≤N−1+α

+
∞�

i=1

(i+1)N�

n=iN+1

�Tn
S�

≤ N − 1 + α+
∞�

i=1

Nαi

= N − 1 + α+
N

1− α
= c < ∞ (41)

APPENDIX II
PROOF OF COROLLARY 1

Proof: We have

�
∞�

n=0

Tn
S [R]� ≤

∞�

n=0

�Tn
S��R� ≤

∞�

n=0

�Tn
S� ≤ c < ∞

(42)

Thus, series
�∞

n=0 T
n
S [R] is a convergent series and we can

define the operator (I−TS)−1[R] =
�∞

n=0 T
n
S [R]. We have

�(I −TS)
−1� = �

∞�

n=0

Tn
S� ≤ c < ∞ (43)

.

8


