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Abstract— This paper studies the state estimation problem
of linear discrete-time systems with stochastic unknown inputs.
The unknown input is a wide-sense stationary process while
no other prior informaton needs to be known. We propose an
autoregressive (AR) model based unknown input realization
technique which allows us to recover the input statistics from
the output data by solving an appropriate least squares prob-
lem, then fit an AR model to the recovered input statistics and
construct an innovations model of the unknown inputs using
the eigensystem realization algorithm (ERA). An augmented
state system is constructed and the standard Kalman filter is
applied for state estimation. A reduced order model (ROM)
filter is also introduced to reduce the computational cost of the
Kalman filter. One numerical example is given to illustrate the
procedure.

I. INTRODUCTION

In this paper, we consider the state estimation problem
for systems with unknown stochastic inputs. The main con-
tribution of our work is that when no prior information
of the unknown inputs is known, we recover the statistics
of the unknown inputs from the measurements, and then
construct an innovations model of the unknown inputs from
the recovered statistics such that the standard Kalman filter
can be applied for state estimation. The innovations model
is constructed by fitting an autoregressive (AR) model to
the recovered input correlation data from which a state
space model is constructed using the balanced realization
technique. The method is tested on stochastically perturbed
laminar flow problem.

The problem of state estimation of systems with unknown
inputs has received considerable attention over the past
few decades. The unknown input observer (UIO) has been
well established for deterministic systems [1]–[3]. Various
methods of building full-order or reduced-order observers
have been developed, such as [4]–[6]. Recently, sliding mode
observers have been proposed for systems with unknown
inputs [7]. The design parameters and matrices need to
be well chosen to satisfy certain conditions in order for
the observers to perform well. For systems without the
“observer matching” condition being satisfied, a high-gain
approach is proposed [8]. The high-gain observers are used
as approximate differentiators to obtain the estimates of the
auxiliary outputs. In the presence of measurement noise, the
high-gain observer amplifies the noise, and extra care needs
to be taken when designing the gain matrix.
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For stochastic systems, the problem of state estimation
is known as unknown input filtering (UIF), and many UIF
approaches are based on the Kalman filter [9]. When the
dynamics of the unknown inputs is available, for example, if
it can be assumed to be a wide-sense stationary process with
known mean and covariance, one common approach called
Augmented State Kalman Filter (ASKF) is used, where the
states are augmented with the unknown inputs [10]. To
reduce the computational complexity of ASKF, optimal two-
stage and three-stage Kalman filters have been developed to
decouple the augmented filter into two parallel reduced-order
filters by applying a U-V transformation [11], [12]. When no
prior information about the unknown input is available, an
unbiased minimum-variance (UMV) filtering technique has
been developed [13], [14]. The problem is transformed into
finding a gain matrix such that the trace of the estimation
error matrix is minimized. Certain algebraic constraints must
be satisfied for the unbiased estimator to exist. In both the
approaches above, the process noise is assumed to be white
noise with known covariance.

In practice, there are many applications where the un-
known inputs can be modeled as a stochastic process. For
example, the state estimation of perturbed laminar flows is
considered in [15]. It shows that the external disturbances
(as well as the sensor noise and initial conditions) can be
modeled as unknown stochastic inputs which perturb the
linearized Navier-Stoke equations. Thus, the state estimation
problem of such system is transformed into the unknown
input filtering problem with stochastic unknown inputs. Also,
our work can be applied to identify the statistics of colored
process noise. There is some research that considers the
Kalman filtering with unknown noise covariances [16]. The
process noise is assumed to be white noise with unknown
covariance, while in our approach, the process noise can be
colored in time as well. There are also applications of our
technique in signal processing, such as the wideband power
spectrum estimation [17], where the problem is to recover the
unknown power spectrum of a wide-sense stationary signal
from the obtained sub-Nyquist rate samples.

In this paper, we address the state estimation problem
of systems with stochastic unknown inputs. The unknown
inputs are assumed to be wide sense stationary, while no
other information about the unknown inputs is known. We
propose a new unknown input filtering approach based on
system realization techniques. Instead of constructing the
gain matrix which needs to satisfy certain constraints, we
apply the standard Kalman filtering using the following pro-
cedure: 1) recover the statistics of the unknown inputs from



the measurements by solving an appropriate least squares
problem, 2) find a spectral factorization of unknown input
process by fitting an autoregressive (AR) model, 3) construct
an innovations model of the unknown inputs via the eigen-
system realization algorithm (ERA) [18] to the recovered
input correlation data, and 4) apply the Augmented State
Kalman Filter for state estimation. Different from existing
methods, we construct a stochastic unknown input model
from sensor data, which can be colored in time. To reduce
the computational cost of the ASKF, we apply the Balanced
Proper Orthogonal Decomposition (BPOD) technique [19] to
construct a reduced order model (ROM) for filtering.

The paper is organized as follows. In Section II, the
problem is formulated, and general assumptions are made
about the system and the unknown inputs. In Section III, the
AR based unknown input realization approach is proposed.
The unknown input statistics are recovered from the mea-
surements, then a linear model is constructed using an AR
model and the ERA is used to generate a balanced minimal
realization of the unknown inputs. After an innovations
model of the unknown inputs is constructed, the ASKF is
applied for state estimation in Section IV. Also, a ROM
constructed using the BPOD is introduced to reduce the
computational cost of Kalman filter. Section V presents one
numerical example that utilize the proposed technique.

II. PROBLEM FORMULATION

Consider a complex valued linear time-invariant discrete
time system:

xk = Axk−1 +Buk−1, yk = Cxk + vk, (1)

where xk ∈ Cn, yk ∈ Cq , vk ∈ Cq , uk ∈ Cp are the state
vector, the measurement vector, the measurement white noise
with known covariance, and the unknown stochastic inputs
respectively. The process uk is used to model the presence
of the external disturbances, process noise, and unmodelled
terms. Here, A ∈ Cn×n, B ∈ Cn×p, C ∈ Cq×n are known.

The following assumptions are made about the system (1):
A1. A is a stable matrix.
A2. rank(B) = p, rank(C) = q, rank(CB)= rank(B)

which implies that p ≤ q.
A3. uk and vk are uncorrelated.
A4. We further assume that the unknown input uk is

generated by a linear stochastic system:

ξk = Aeξk−1 +Beνk−1, uk = Ceξk + µk, (2)

where νk, µk are uncorrelated white noise processes.
Remark 1: A2 is a general assumption in unknown input

observer/filtering, the so-called “observer matching” condi-
tion. A4 implies that uk is a wide-sense stationary(WSS)
process with a rational power spectrum.

In this paper, we consider the state estimation problem
when the system (2), i.e., (Ae, Be, Ce) are unknown. Given
the output data yk, we want to construct an innovations
model for the unknown stochastic input uk, such that the
output statistics of the innovations model and system (2) are
the same. Given such a realization of the unknown input,

we apply the standard Kalman filter for state estimation,
augmented with the unknown input states.

III. AR BASED UNKNOWN INPUT REALIZATION
TECHNIQUE

In this section, we propose an AR based unknown input
realization technique which can construct an innovations
model of the unknown inputs such that the ASKF can be
applied for state estimation. First, a least squares problem
is formulated based on the relationship between the inputs
and outputs to recover the statistics of the unknown inputs.
Then an AR model is constructed using the recovered input
statistics, and a balanced realization model is constructed
using the ERA.

A. Extraction of Input Autocorrelations via a Least Squares
Problem

Consider system (1) with zero initial conditions, the output
yk can be written as:

yk =

∞∑
i=1

hiuk−i + vk, (3)

where hi = CAi−1B, i = 1, 2, · · · are the Markov parame-
ters of system (1).

For a linear time-invariant (LTI) system, under assumption
A1, the output {yk} is a WSS process when {uk} is WSS.
From the definition of the autocorrelation function of a WSS
process, the output autocorrelation can be written as:

Ryy(m) = E[yky
∗
k+m]

=

∞∑
i=1

∞∑
j=1

hiRuu(m+ i− j)h∗j +Rvv(m), (4)

where m = 0,±1,±2, · · · is the time-lag between yk and
yk+m. Here, assumption A3 is used. We use x∗ to denote
the complex conjugate transpose of x, and xT to denote the
transpose of x.

Since vk ∼ N(0,Ω), Rvv(m) = Ω for m = 0, and
Rvv(m) = 0, otherwise. We denote R̂yy(m) = Ryy(m) −
Rvv(m), and hence, the relationship between input and
output autocorrelation function is given by:

R̂yy(m) =

∞∑
i=1

∞∑
j=1

hiRuu(m+ i− j)h∗j . (5)

For multiple input multiple output (MIMO) systems, hi,
R̂yy(m), Ruu(m) are matrices. To solve for the unknown in-
put autocorrelations Ruu(m), first we need to use a theorem
from linear matrix equations [20].

Theorem 1: Consider the matrix equation

AXB = C, (6)

where A, B, C, X are all matrices. If A ∈ Cm×n =
(a1, a2, · · · , an), where ai are the columns of A, then define
vec(A) ∈ Cmn×1 as: vec(A) =

(
a∗1 a∗2 · · · a∗n

)∗
.



The matrix equation (6) can be transformed into one vector
equation:

(BT ⊗A)vec(X) = vec(C), (7)

where BT ⊗ A is the Kronecker product of BT and A. If
A is an m × n matrix and B is a p × q matrix, then the
Kronecker product A⊗B is the mp× nq block matrix:

A⊗B =

a11B a12B · · · a1nB
...

... · · ·
...

am1B am2B · · · amnB

 . (8)

By applying Theorem 1, (5) can be written as:

vec(R̂yy(m))︸ ︷︷ ︸
∈Rq2×1

=

∞∑
i=1

∞∑
j=1

h̄j ⊗ hi︸ ︷︷ ︸
∈Rq2×p2

vec(Ruu(m+ i− j))︸ ︷︷ ︸
∈Rp2×1

, (9)

where h̄i denotes the matrix hi with complex conjugated
entries, and h∗i = (h̄i)

T . Now, we estimate the unknown
input autocorrelations by the following procedure.

1) Choose design parameter M : For a stable system, we
make the following assumption.

A5. Assume that there exists a finite number M such that
the Markov parameters of the system ‖hi‖ ≤ δ, i > M ,
where δ is small enough.

Here, ‖A‖ denotes the Frobenius norm of matrix A, and
‖x‖2 denotes the Euclidean norm of vector x. M is a design
parameter that varies with different systems and can be
chosen as large as desired. Thus, (9) can be written as:

vec(R̂yy(m)) =

M∑
i=1

M∑
j=1

h̄j ⊗ hivec(Ruu(m+ i− j)). (10)

2) Choose design parameters No, Ni: If {uk} is WSS,
then we make the following assumption.

A6. R̂yy(m) only has significant values within a range
−No ≤ m ≤ No, and negligible values outside this range.
Also, we assume the support of Ruu(m) is limited to −Ni ≤
m ≤ Ni.

This is a rather standard assumption when computing
a power spectrum from an autocorrelation function. The
numbers No and Ni depend on the dynamic system and
unknown inputs, and are design parameters that can be
chosen as large as required.

Under assumption A6, we have the following proposition.
Proposition 1: The relation Ni ≤ No holds, which im-

plies that all significant input autocorrelations can be recov-
ered from the output autocorrelations.

Proof: From the assumption that the support of R̂yy is
limited to [−No, No] , we have: R̂yy(No + 1) = 0.

Using (9), vec(R̂yy(No+1)) =

∞∑
i=1

h̄i⊗hivec(Ruu(No+

1)) +

∞∑
i=2

h̄i−1 ⊗ hivec(Ruu(No)) + · · · .

If Ni > No, which means Ruu(No + 1) 6= 0, then
it follows that Ryy(No + 1) is also not negligible, which
contradicts the assumption. Thus, as a consequence, Ni ≤
No.

The following equation is used for computation of the
unknown input autocorrelations.

vec(R̂yy(m)) =

M∑
i=1

M∑
j=1

h̄j ⊗ hivec(Ruu(m+ i− j)), (11)

where |m| ≤ No, and |m+ i− j| ≤ Ni.
3) Solve the least squares problem: We collect 2No + 1

output autocorrelations, and there are 2Ni+1 unknown input
autocorrelations:

vec(R̂yy(−No))
...

vec(R̂yy(0))
...

vec(R̂yy(No))


︸ ︷︷ ︸

vec(R̂yy)

= Cyu


vec(Ruu(−Ni))

...
vec(Ruu(0))

...
vec(Ruu(Ni))


︸ ︷︷ ︸

vec(Ruu)

, (12)

where Cyu is the coefficient matrix and can be calculated
from (11).

Under assumption A2 and A6, we have the following
proposition.

Proposition 2: Equation (12) has a unique least squares
solution R̂uu(m),m = ±1,±2, · · · ,±Ni .

Proof: First, we prove that A2 is a necessary condition.
The (ith, jth) term in Cyu is:

Cyu(i, j) =
∑
s

∑
t

h̄t ⊗ hs, for some s, t (13)

where i = 1, 2, · · · , 2No + 1, j = 1, 2, · · · , 2Ni + 1.
Since hi = CAi−1B ∈ Cq×p, rank(hi) ≤ min(p, q) = k.

From the property that rank(A⊗B) = rank(A)rank(B), we
have rank(h̄t ⊗ hs) = rank(h̄t)rank(hs) = k2, which means
Cyu(i, j) has at most k2 independent columns. It follows
that Cyu has at most k2(2Ni+1) independent columns, i.e.,
rank(Cyu) ≤ k2(2Ni+1). For Cyu to have a left inverse, Cyu
should have full column rank, i.e., rank(Cyu) = p2(2Ni+1).
Thus, Cyu has a left inverse if and only if k = p, which
implies min(p, q) = p, and hence, p ≤ q.

There are q2(2No + 1) equations with p2(2Ni + 1) un-
knowns, from the assumptions p ≤ q and Ni ≤ No, there
is an unique solution R̂uu(m),m = 0,±1, · · · ,±Ni in the
least square sense, and R̂uu(m) is the input autocorrelations
we extract from the output autocorrelations.

Remark 2: The size of Cyu is q2(2No+1)×p2(2Ni+1)
and it would be large when p and q increase, and hence, large
scale least squares problem needs to be solved for systems
with large number of inputs/outputs. For example, a modified
conjugate gradients method [21] could be used as follows.

The least squares problem need to be solved is:

vec(R̂yy) = Cyuvec(Ruu). (14)

Multiply C∗yu on both sides, denote Ls = C∗yuvec(R̂yy),
x̄ = vec(Ruu), and Cs = C∗yuCyu, thus Cs = C∗s , and
the problem is equivalent to solve the least squares problem
Csx̄ = Ls for x̄. A conjugate gradient method to solve this
problem is summarized in Algorithm 1.



Algorithm 1 Conjugate gradient algorithm
1) For a least squares problem Csx̄ = Ls, where Cs =

C∗s , x̄ is unknown.
2) Start with a randomly initial solution x̄0.
3) r0 = Ls − Csx̄0, p0 = r0.
4) for k = 0, repeat
5) αk =

r∗krk
p∗kCspk

,
x̄k+1 = x̄k + αkpk,
rk+1 = rk − αkCspk,
if rk+1 is sufficient small then exit loop.
βk =

r∗k+1rk+1

r∗krk
,

pk+1 = rk+1 + βkpk,
k = k + 1,
end repeat.

6) The optimal estimation is xk+1.

Denote Ruu(m) as the “true” input autocorrelations, and
∆(m) = Ruu(m) − R̂uu(m) as the error of the input
autocorrelations we extract, ∆(m) results from two design
parameters: the choice of M and Ni. We analyze the errors
seperately, in the following.

Proposition 3: Denote RMuu(m) as the input autocorrela-
tions we extract by using M Markov parameters of the dy-
namic system. The errors of input autocorrelations resulting
from assumption A5 is: ‖∆M (m)‖ ≤ kMδ, where kM is
some constant, δ is defined in assumption A5.

The Perturbation theory [22] is used to prove the above
result, and the proof is shown in Appendix .

Remark 3: Error analysis in the Fourier domain.
The power spetral density is defined as:

Suu(ω) =

∞∑
k=−∞

Ruu(k)e−jkω, (15)

Syy(ω) =

∞∑
k=−∞

R̂yy(k)e−jkω, (16)

Thus, by substituting (5), the relationship between the output
power spectral density and input power spectral density is:

Syy(ω) =

∞∑
k=−∞

RMuu(k)e−jkω + ∆SM (ω)

= SMyy(ω) + ∆SM (ω), (17)

where

∆SM (ω) =

∞∑
k=−∞

hM+1Ruu(k)h∗M+1e
−jkω

+

∞∑
k=−∞

hM+1Ruu(k)h∗1e
−j(k−M)ω + · · ·

= hM+1Suu(ω)h∗M+1 + hM+1Suu(ω)ejMωh∗1 + · · · . (18)

Thus, ‖∆SM (ω)‖ ≤ k1δ, where k1 is some constant.
Hence, the truncation error by using M Markov parameters
can be seen to be a small perturbation in the frequency
domain.

Proposition 4: Denote RNuu(m) as the input autocorrela-
tions we extract under assumption A6. The errors resulting
from this assumption is ‖∆N (m)‖ ≤ kNδ, where kN is
some constant, δ is defined in assumption A6.

The proof is similarily like the proof of Proposition 3, and
is omitted here due to the page limit.

Remark 4: Error analysis in frequency domain:

Syy(ω) = SNyy(ω) + ∆SN (ω), (19)

where SNyy(ω) =
∑∞
k=−∞RNuu(k)e−jkω , and

‖∆SN (ω)‖ ≤
∞∑

k=−∞

(

∞∑
i=1

∞∑
t=1

δ‖hi‖‖h∗t ‖)e−jkω‖ ≤ k2δ, (20)

where k2 is some constant.
Under the assumptions A5 and A6, the following propo-

sition considers the total errors of input autocorrelations we
recover.

Proposition 5: Denote R̂uu(m) as the input autocorrela-
tion function we estimate from the output autocorrelations,
and let ∆(m) = Ruu(m) − R̂uu(m) be the error between
the estimated input autocorrelation and the “true” input
autocorrleation. Then ‖∆(m)‖ ≤ kδ, where k is some
constant.

Proposition 3 and 4 are used for the proof, and is omitted
here due to the page limit. The results above show that if
M , Ni, No are chosen large enough, the errors in estimating
the input autocorrelations can be made arbitrarily small.

B. Construction of the AR Based Innovations Model

After we extract the input autocorrelations from the output
autocorrelations, we want to construct a system which will
generate the same statistics as the ones we recovered in
Section III-A. If assumption A4 is satisfied, the power
spectrum of uk is continuous, and can be factored [23]. Such
system can be constructed by using an Autoregressive(AR)
model. In an AR model, the time series can be expressed as
a linear function of its past values, i.e.,

u(k) =

Mi∑
i=1

aiu(k − i) + ε(k), (21)

where ε(k) is white noise with distribution N(0,Ωr), Mi

is the order of the AR model, and ai, i = 1, 2, · · · ,Mi are
the coefficient matrices. For a vector autoregressive model
with complex values, the Yule-Walker equation [24] which
is used to solve for the coefficients needs to be modified.
The modified Yule-Walker equation can be written as:

(
Ruu(−1) Ruu(−2) · · · Ruu(−Mi)

)
=

 a∗1
...

a∗Mi


∗

×


Ruu(0) Ruu(−1) · · · Ruu(1−Mi)
Ruu(1) Ruu(0) · · · Ruu(2−Mi)

...
...

...
...

Ruu(Mi − 1) Ruu(Mi − 2) · · · Ruu(0)

 . (22)



Equation (22) is used to solve for the coefficient matrices
ai, i = 1, 2, · · · ,Mi. The covariance of the residual white
noise ε(k) can be solved using the following equation:

Rεε(m) = Ruu(m)−
Mi∑
i=1

Mi∑
j=1

aiRuu(m+ i− j)a∗j , (23)

where Ωr = Rεε(0). The balanced minimal realization for
the AR model (21) can be expressed as:

ηk = Anηk−1 +Bnuk−1, uk = Cnηk + εk, (24)

where (An, Bn, Cn) are solved by using the ERA technique
[18] with ai, i = 1, · · · ,Mi as the Markov parameters of the
system. Equation (24) is equivalent to:

ηk = (An +BnCn)ηk−1 +Bnεk−1, uk = Cnηk + εk, (25)

where εk is white noise with covariance Ωr. By using
the Cholesky Decomposition, we can find a unique lower
triangular matrix P such that: Ωr = PP ∗.

If wk is white noise with distribution N(0, 1), then Pwk
would be white noise with distribution N(0,Ωr). Thus, the
innovation model we construct that has the same statistics as
the unknown input system (2) is:

ηk = (An +BnCn)ηk−1 +BnPwk−1, uk = Cnηk + Pwk, (26)

where wk is a randomly white noise with standard normal
distribution.

Under assumption A4, we have the following proposition.
Proposition 6: Denote R̂uu(m) as the input autocorrela-

tions recovered from the measurements, then R̂uu(m) can
be reconstructed exactly by using the innovations model
(26), i.e., R̃uu(m) = R̂uu(m), where R̃uu(m) is the input
autocorrelations of the realization of system (26).

From Proposition 5 and 6, under the same assumptions,
the following corollary immediately follows.

Corollary 1: Denote uk as the actual unknown input
process, and Ruu(m) as the actual input autocorrelation
function. Then ‖R̃uu(m) − Ruu(m)‖ ≤ kaδ, where ka is
some constant, when δ is small enough. System (26) is an
innovations model for the unknown input uk.

The procedure of constructing the innovations model is
summarized in Algorithm 2.

Remark 5: For real valued system, we can save the com-
putation by using the properities of autocorrelation functions:

Ruiui(−m) = Ruiui(m), Ruiuj (−m) = Rujui(m), i 6= j (27)

Thus, we only need to collect No+1 output autocorrelations
and have p2(No + 1) equations with q2(Ni + 1) unknowns
in (12).

IV. AUGMENTED STATE KALMAN FILTER AND MODEL
REDUCTION

After we construct an innovations model for the unknown
inputs, we apply the standard Kalman filter on the augmented
system with states augmented by the unknown input states.
A ROM based filter is also constructed using the BPOD for
reducing the computational cost of the resulting filter.

Algorithm 2 AR based unknown input realization technique
1) Choose finite number No, compute output autocorre-

lation function Ryy(m) by using measurements yk,
|m| ≤ No.

2) Choose finite number M , construct the coefficient
matrix Cyu from (11).

3) Choose finite number Ni, solve the least squares prob-
lem (12) for unknown input autocorrelation function
Ruu(m), |m| ≤ Ni.

4) Construct an AR model for the unknown input u(k) =∑Mi

i=1 aiu(k − i) + ε(k), find the coefficient matrices
ai, i = 1, 2, · · ·Mi by solving the modified Yule-
Walker equation (22).

5) Find the covariance Ωr of ε(k) by solving (23).
6) Construct the state space representation (24) for the

AR model using ERA.
7) Find a unique lower triangular matrix P such that

Ωr = PP ∗, and construct an innovations model as
in (26).

A. Augmented State Kalman Filter

The full order system can be represented by augmenting
the states of the original system as:(
xk+1

ηk+1

)
=

(
A BCn
0 An +BnCn

)(
xk
ηk

)
+

(
BP
BnP

)
wk,

yk =
(
C 0

)(xk
ηk

)
+ vk, (28)

where wk is white noise with standard normal distribution.
vk is white noise with known covariance. Thus, we may
now use the standard kalman filter for state estimation of
the augmented system (28).

B. Unknown Input Estimation Using Model Reduction

For large scale systems, we can use model reduction tech-
nique such as Balanced Proper Orthogonal Decomposition
(BPOD) [19] to construct a reduced order model (ROM)
first, and then extract the input autocorrelations from the
reduced order model. We apply the Kalman filter to the ROM
to reduce the computational cost. For a large scale system
with a large number of inputs and outputs, we can also use
the randomized proper orthogonal decomposition (RPOD)
technique [25] for model reduction.

The ROM system is extracted from the full order system
using the BPOD and is denoted by:

xk = Arxk−1 +Bruk−1,

yk = Crxk + vk. (29)

Let ĥi = CrA
i−1
r Br, i = 1, 2, · · · ,M be the Markov

parameters of the ROM. Then the relationship between input
autocorrelations and output autocorrelations can be written
as: R̂yy(m) =

∑M
i=1

∑M
j=1 ĥiRuu(m+ i− j)ĥ∗j .

Following the same procedure as in Algorithm 2, we can
now recover the input autocorrelations, and construct an
innovations model which can generate the same statistics as



the unknown inputs. The advantage of using model reduction
is that for a large scale system, computing ĥi = CrA

i−1
r Br

is much faster than computing hi = CAi−1B because of the
reduction in the size of A. Also, the order of the ROM is
much smaller than the order of the full order system, and
thus the computational cost of using the Kalman filter is
much reduced. Hence, even with the augmented states, the
standard Kalman filter remains computationally tractable.

Remark 6: To reduce the computational cost of the aug-
mented states in Kalman filter, we can also use the existing
optimal two-stage or three-stage kalman filtering technique
[11], [12], which decouple the augmented filter into two
parallel reduced order filters. These techniques are preferable
when the order of the innovations model is high, while the
BPOD based ROM filter is preferable when the order of the
dynamic system is high.

V. COMPUTATIONAL RESULTS

We test the method on the perturbed laminar flow equation.
We construct the unknown input system by using both the
full order system as well as the ROM constructed by BPOD.
We check the results by comparing the autocorrelation func-
tions of the inputs, outputs and the states. Also, we show the
state estimation using the Kalman filter.

A. Orr-Sommerfeld Equation
Consider the three-dimensional flow between two infinite

plates (at y = ±1) driven by a gradient in the streamwise
x direction. The mean velocity profile is given by U(y) =
1− y2. At each wavenumber pair (α, β)mn, the wall-normal
velocity v(x, y, z, t) and wall-normal vorticity η(x, y, z, t)
are:

v(x, y, z, t) = v̂mn(y, t)ei(αx+βz),

η(x, y, z, t) = η̂mn(y, t)ei(αx+βz). (30)

Denote q̂mn(y, t) =

(
v̂mn(y, t)
η̂mn(y, t)

)
, where (̂.) denotes

the Fourier transformed variable, and (.)mn denotes the
wavenumber pair (α, β)mn. The evolution of the flow in
Fourier domain can be written as:

d

dt
Mq̂mn + Lq̂mn = Tf(y, t), (31)

where

M =

(
−∆ 0
0 I

)
, (32)

L =

(
−iαU∆ + iαU

′′
+ ∆2/Re 0

iβU
′

iαU −∆/Re

)
. (33)

Operater T transforms the forcing f = (f1, f2, f3)T on
the evolution equation for the velocity vector (u, v, w)T into
an equivalent forcing on the (v, η)T system [15],

T =

(
iαD k2 iβD
iβ 0 −iα

)
, k2 = α2 + β2,∆ = D2 − k2, (34)

and D, D2 represent the first and second order differen-
tiation operators in the wall-normal direction. The forcing

f(y, t) accounts for the nonlinear terms and the external
disturbances via an unknown stochastic model.

The boundary conditions on v and η correspond to no-slip
solid walls v(±1) = Dv(±1) = η(±1) = 0.

System (31) can be discretized using Chebyshev poly-
nomials, and in the simulation, we assume there are two
unknown inputs and two measurements.

In the simulation, the design parameters M = 1000,
Ni = No = 100 are chosen as follows. M is chosen so
that the Markov parameters ‖hi‖ ≈ 0, i > M . Ni and No
are chosen by trial and error. First, we randomly choose a
suitable Ni and No, where Ni ≤ No. Then we follow the AR
based unknown input realization procedure, and construct the
augmented state system (28). Given the white noise processes
wk, vk perturbing the system, we check the output statistics
of the augmented state system (28). If the errors are small
enough, we stop, otherwise, we increase the values of Ni
and No, and repeat the same procedure until the errors are
negligible. Notice that increasing M , Ni, No would increase
the accuracy of the input statistics we can recover, but also
increases the computational cost. The unknown input f is
assumed to be a colored noise generated by a third order
linear complex system. The realization of the unknown inputs
is a second order system. The measurement noise is white
noise with covariance 0.1I2×2.

First, we show the comparison of the input autocorrela-
tions we recover with the actual input autocorrelations in
complex plane in Fig. 1. Since there are two inputs, thus,
the cross-correlation function between input 1 and input 2
are also included in the input autocorrelations.

Before we apply the ASKF for the state estimation, we
compare the statistics of the states and outputs of the system
perturbed by the unknown inputs we construct and the actual
system. Fig. 2 shows the comparison between the estimated
output autocorrelations and the actual autocorrelations. The
comparison of the state autocorrelations is omitted here due
to the page limit.

It can be seen that the statistics of the unknown inputs can
be recovered almost perfectly, and given the system perturbed
by the unknown inputs innovations model we constructed,
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Fig. 1. Comparison of input autocorrelations
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Fig. 2. Comparison of output autocorrelations
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Fig. 3. Comparison of input autocorrelation relative error

the statistics of the outputs are almost the same as well.
Next, we compare the performance of the unknown inputs

constructed using the ROM with the full order system. The
full order system has 30 states, and the ROM has 15 states.
The relative error of the input autocorrelation is shown in
Fig. 3, and the comparison of the relative error of output
autocorrelations is shown in Fig.4.

We can see that the statistics reconstructed by using the
ROM is not as accurate as using the full order system,
however, the relative error is on the same scale, and hence,
the computational cost is reduced without losing too much
accuracy.

The comparison of the state estimation using the ROM
is shown in Fig. 5. The behavior of the ASKF using full
order system is similar, and is omitted here. We randomly
choose two states and show the comparison of the acutal state
with the estimated states. The state estimation error and 3σ
bounds are shown. Since the error is complex valued, only
the absolute value of the error is shown. It can be seen that
the kalman filter using the ROM perform well, and hence,
for a large scale system, the computational complexity of
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Fig. 4. Comparison of output autocorrelation relative error
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Fig. 5. State estimation using ROM

ASKF can be reduced by using the BPOD.

VI. CONCLUSION

In this paper, we have proposed a balanced unknown
input realization method for the state estimation of system
with unknown stochastic inputs. The unknown inputs are
assumed to be a wide sense stationary process with a rational
power spectrum, and no other prior information about the
unknown inputs needs to be known. We recover the unknown
inputs statistics from the output data using a least-squares
procedure, and then construct a balanced minimal realization
of the unknown inputs using an AR model and the ERA
technique. The recovered innovations model is used for state
estimation, and the standard Kalman filter is applied on
the augmented system. The next step in this process would
require us to consider more complex realistic problems
in fluid flow application, and cases where the unknown
numbers of inputs/ outputs are large, and also cases where
the locations of the inputs are unknown.



APPENDIX
PROOF OF PROPOSITION 3

Proof: The output autocorrelation function using the
first M Markov parameters is:

R̂Myy(m) =

M∑
i=1

M∑
j=1

hiRuu(m+ i− j)h∗j . (35)

Comparing with (5), the output autocorrelation errors
resulting from using M Markov parameters is:

∆1(m) =

∞∑
i=M+1

M∑
j=1

hiRuu(m+ i− j)h∗j +

∞∑
i=M+1

∞∑
j=M+1

hiRuu(m+ i− j)h∗j +

M∑
i=1

∞∑
j=M+1

hiRuu(m+ i− j)h∗j . (36)

From assumption A5, by choosing M large enough, we
have ‖hi‖ ≤ δ, i > M , where δ is small enough, thus,

‖∆1(m)‖ ≤
∞∑

i=M+1

M∑
j=1

δ × ‖Ruu(m+ i− j)‖‖h∗j‖

+

∞∑
i=M+1

∞∑
j=M+1

δ × ‖Ruu(m+ i− j)‖ × δ +

+

M∑
i=1

∞∑
j=M+1

‖hi‖‖Ruu(m+ i− j)‖ × δ ≤ k3δ, (37)

where k3 is some constant.
Denote Cyu as the “true” coefficient matrix and CMyu as

the coefficient matrix using M Markov papameters, we need
to solve the least squares problem:

vec(R̂yy) = CMyuvec(RMuu). (38)

where RMuu is the input autocorrelation we recover from using
M Markov parameters, and vec(R̂yy) is defined in (12).

Since ‖vec(R̂yy(m)) − vec(R̂Myy(m))‖2 = ‖R̂yy(m) −
R̂Myy(m)‖ = ‖∆1(m)‖ ≤ k3δ , we have vec(R̂yy(m)) =

vec(R̂Myy(m)) + ∆2(m), where ‖∆2(m)‖2 ≤ k3δ, or equiv-
alently

vec(R̂yy) = vec(R̂Myy) + ∆2, (39)

Consider (12), vec(R̂yy) and vec(R̂Myy) can be written as:

vec(R̂yy) = Cyuvec(Ruu),

vec(R̂Myy(m)) = CMyuvec(Ruu), (40)

Substitute into (39), and since (CMyu)−1 exists, we have:

vec (Ruu)− vec(RMuu) = (CMyu)−1∆2, (41)

which means: ‖vec(Ruu)− vec(RMuu)‖2 ≤ kMδ, where kM
is some constant. Thus, we have ‖∆M (m)‖ ≤ kMδ, where
kM is some constant.

REFERENCES

[1] S.-H. Wang, E.J.Davison, and P. Dorato, “Observing the states of
systems with unmeasurable disturbances,” IEEE Transactions on Au-
tomatic Control, vol. 20,No.5, pp. 716–717, 1975.

[2] S. Bhattacharyya, “Observer design for linear systems with unknown
inputs,” IEEE Transactions on Automatic Control, vol. AC-23,No.3,
pp. 483–484, 1978.

[3] P. Kudva, N.Viswanadham, and A. Ramakrishna, “Observers for linear
systems with unknown inputs,” IEEE Transactions on Automatic
Control, vol. 25,No.1, pp. 113–115, 1980.

[4] M. Hou and P. Muller, “Design of observers for linear systems with
unknown inputs,” IEEE Transactions on Automatic Control, vol. 37,
No.6, pp. 871–875, 1992.

[5] S. Hui and S. H. Zak, “Low-order state estimators and compensators
for dynamical systems with unknown inputs,” Systems & Control
Letters, vol. 21, No.6, pp. 493–502, 1993.

[6] M. Darouach, M. Zasadzinski, and S. Xu, “Full-order observers for
linear systems with unknown inputs,” IEEE Transactions on Automatic
Control, vol. 39, No.3, pp. 606–609, 1994.

[7] S. K. Spurgeon, “Sliding mode observers: a survey,” International
Journal of Systems Science, vol. 39, No.8, pp. 751–764, 2008.

[8] K. Kalsi, J. Lian, S. Hui, and S. H. Zak, “Sliding-mode observers for
systems with unknown inputs: A high-gain approach,” Automatica,
vol. 46, Issue 2, pp. 347–353, 2010.

[9] M. Darouach, M. Zasadzinski, A. B. Onana, and S. Nowakowski,
“Kalman filtering with unknown inputs via optimal state estimation
of singular systems,” International Journal of Systems Science, vol.
26(10), pp. 2015–2028, 1995.

[10] C.-S. Hsieh, “A unified framework for state estimation of nonlinear
stochastic systems with unknown inputs,” in Proceedings of 9th IEEE
Asian Control Conference, 2013.

[11] C.-S. Hsieh and F.-C. Chen, “Optimal solution of the two-stage kalman
estimator,” IEEE Transactions on Automatic Control, vol. 44, pp. 194–
199, 1999.

[12] F. B. Hmida, K. Khemiri, J. Ragot, and M. Gossa, “Three-stage kalman
filter for state and fault estimation of linear stochastic systems with
unknown inputs,” Journal of the Franklin Institute, vol. 349, pp. 2369–
2388, 2012.

[13] S. Gillijns and B. D. Moor, “Unbiased minimum-variance input and
state estimation for linear discrete-time systems,” Automatica, vol. 43,
pp. 111–116, 2007.

[14] C.-S. Hsieh, “Extension of unbiased minimum-variance input and state
estimation for systems with unknown inputs,” Automatica, vol. 45, pp.
2149–2153, 2009.

[15] J. Hepffner, M. Chevalier, T. R. Bewley, and D. S. Henningson, “State
estimation in wall-bounded flow systems. part 1. perturbed laminar
flows,” Journal of Fluid Mechanics, vol. 534, pp. 263–294, 2005.

[16] J. Dunik and M. Simandl, “Estimation of state and measurement noise
covariance matrices by multi-step prediction,” in Proceedings of the
17th IFAC World Congress, 2008, pp. 3689–3694.

[17] D. D. Ariananda and G. Leus, “Compressive wideband power
spectrum estimation,” IEEE Transactions on signal processing, vol.
60,No.9, pp. 4775–4789, 2012.

[18] J.-N. Juang, Applied System Identification. Englewood Cliffs, NJ:
Prentice Hall, 1994.

[19] C. W. Rowley, “Model reduction for fluids using balanced proper
orthogonal decomposition,” International Journal of Bifurcation and
Chaos, vol. 15, pp. 997–1013, 2005.

[20] W. E. Roth, “On direct product matrices,” Bulletin of the American
Mathematical Society, vol. 40, pp. 461–468, 1934.

[21] V. Faber and T. Manteuffel, “Necessary and sufficient conditions for
the existence of a conjugate gradient method,” SIAM Journal on
Numerical Analysis, vol. 21, pp. 352–362, 1984.

[22] T. Kato, Perturbation Theory for Linear Operators. New York:
Springer-Verlag, 1995.

[23] E. Wong and B. Hajek, Stochastic Processes in Engineering Systems.
New York: Springer-Verlag, 1985.

[24] B. Friedlander and B. Porat, “The modified yule-walker method
of arma spectral estimation,” IEEE Transactions on Aerospace and
Electronic Systems, vol. AES-20, No.2, pp. 158–173, 1984.

[25] D. Yu and S. Chakravorty, “A randomized proper orthogonal decom-
position technique,” arXiv: 1312.3976, Tech. Rep., 2013, submitted to
Automatica.


