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motion model for every link is θ̈i = αi +wi, whose discrete
version for the entire state can be written as

xk+1 = Axk + Buk + Gwk (62)

where

A =
(

I8 I8δt
08 I8

)
, B =

(
08

I8δt

)
, G =

(
08

I8

√
δt

)
(63)

where δt is the time interval between two consecutive time
steps, and In and 0n are the identity matrix and square zero
matrix of dimension n, respectively.

8.3.2. Observation model. We use the light–dark environ-
ment setting as the observation model, which is also used in
Platt et al. (2010, 2011). In the light–dark environment, the
accuracy of sensory readings is encoded by a gray level,
in which the regions that have access to more accurate
sensory readings are lighter than the regions that do not
have access to such informative sensory readings. In this
experiment, we assume that we measure the state of the
system, but this measurement is more accurate as we get
closer to the left wall on which our sensor is mounted. (This
model is adopted from Platt et al. (2010).) Thus, we have
z = h( x)= [z1, . . . , z8]T , where

zi = θi + vi, vi ∼ N ( 0, ( η|xi − l| + σb)2 ) (64)

where xi is the x coordinate of the ith joint location, l is the
location of the vertical wall, η defines the dependency of the
noise standard deviation on the distance from the wall, and
σb is the bias standard deviation. Figure 9 shows an example
of such an environment, in which l = −1.5, η = 0.1, and
σb = 10−4. The full observation model can be written as

zk = h( xk)= Hxk +Mvk (65)

where H = [I8, 08] and M = I8.

8.3.3. Sampling stabilizer parameters. The described sys-
tem is a controllable and observable system, and thus we
adopt the SLQG controller as the stabilizing controller.
Therefore, the parameters of the controller are points in
the equilibrium space, as explained in Section 5. In other
words, to generate sample nodes in the state space, we need
to sample the configuration space ( θ1, . . . , θ8) and append
zero angular velocities to it. To connect these samples in
the state space we design simple trajectories between nodes,
along which we accelerate the joints (angles) with constant
acceleration until they are halfway to the next node, and
after which we decelerate the joints until they reach the next
node.

8.3.4. Construction of the SLQG-FIRM and planning with
it. First, corresponding to sampled nodes in the state space,

we compute corresponding FIRM nodes and then design
local controllers according to Algorithm 1. In a similar pro-
cedure to the one in the previous experiment, we compute
the transition costs and probabilities.

To solve the DP, we need to characterize the goal nodes.
In Figure 9, the goal region for the tip location of the
manipulator is shown by a purple circle. We mark all PRM
samples whose tip locations are within the goal region as
goal nodes. Setting the cost-to-go to zero for all goal nodes,
we solve the DP and compute the optimal feedback on the
graph according to Algorithm 1. Finally, we execute the
plan based on Algorithm 2 and we illustrate the propagation
of the covariance of the manipulator tip in Figure 9 in red.
As can be seen in Figure 9, there are two passages among
the obstacles to reach the goal region. Although the right
passage is closer to the initial configuration of the manip-
ulator, the manipulator detours to a longer path through
the left passage, because there is more accurate sensory
information available in the left passage than the right one.
As is seen in this example, the feedback plan minimizes
the collision probability and picks the safest path, while
being robust to deviations. In other words, if for any reason
the manipulator deviates significantly from the underlying
PRM, the feedback plan connects the deviated belief to the
best neighboring FIRM node in real time, and continues the
pre-computed plan from this node.

9. Comparison and limitations

In this section, we perform a short comparison of SLQG-
FIRM against the two most related methods in the literature:
BRM (Prentice and Roy, 2009) and LQG-MP on roadmaps
(Van den Berg et al., 2011). Both methods are belief-space
planners that exploit roadmap-based ideas. We compare
the methods in terms of the offline construction and online
planning complexity, and also in terms of some other
properties, all listed in Table 2. In the following, we go over
the complexity analysis that leads to the entries in this table.
Afterwards, we discuss limitations of the SLQG-FIRM.

Offline construction complexity: In a general graph, the
number of paths between two given nodes is exponential in
the number of nodes N . For example, if each node in a graph
is connected to k nearest neighbor nodes on the graph, for
a search depth of d edges on the graph, the corresponding
search tree contains kd paths. Notice that each of these paths
has d edges on it. Thus, if we directly (without using belief
stabilizers) propagate the uncertainty on a roadmap for a
depth of d, we have to evaluate the cost on dkd edges. So,
the asymptotic complexity of the overall problem is of the
order O( NkN ). Now, if computing the cost and transition
probabilities associated with each edge under uncertainty is
a constant multiplier O( c) of computing its cost in a deter-
ministic case, the overall complexity of the methods based
on direct belief propagation is O( cNkN ). On the other hand,
in any variant of FIRM, due to the edge independence, only
the cost of O( Nk) edges needs to be constructed as in PRM,



26 The International Journal of Robotics Research 0(0)

Table 2. Belief space roadmap-based method comparison (without using a heuristic in search algorithms).

Algorithm Offline
construction
complexity
(no heuristic)

Replanning
(online
planning)
complexity

Future
observations

System
requirement

Valid region
of plan

Collision
probabilities

Generic PRM O( Nk) O( k) ——— Assumes a controller
exists to drive the
system from node to
node

On the graph
only

———

BRM O( cNkN ) O( c N
l kN ) or

O( cNkN )

Maximum
likelihood
observation

Well linearizable
systems

Vicinity of the
nominal path

Not considered

LQG-MP on
roadmaps

O( cNkN ) O( cNkN ) All observations Well linearizable
systems

Vicinity of the
nominal path

Simplified
measures are
used

Generic FIRM O( cNk) O( ck) ——— Assumes a controller
exists to drive the
system from node to
node

Union of con-
vergence regions of
local controllers

———

SLQG-FIRM O( cNk) O( ck) or O( 1) All observations Well linearizable, and
linear controllable and
observable systems

Vicinity of whole
PRM (entire space
for a dense PRM)

Computed

and thus the overall complexity of offline construction of
FIRM is O( cNk).

Online planning (replanning) complexity: If the system
deviates from the valid region of the plan, in direct prop-
agation methods, edge costs need to be recomputed for all
edges. So, in BRM and LQG-MP on roadmaps, the replan-
ning complexity will be of the order O( NkN ). If the cost
of each edge is defined in such a way that it only depends
on the belief at the start and end of the edge (i.e. does not
depend on the belief along the edge), BRM can reduce the
computation complexity to O( c( N/l) kN ) through covari-
ance factorization techniques, where l is assumed to be the
length (number of steps) of each edge. In FIRM, in the
case of replanning (submitting a query with new starting
point), it is only necessary to connect the deviated belief to
k neighboring FIRM nodes. Thus, we only need to compute
the cost for the k new edges. It is worth noting that if the
underlying PRM is dense enough that the valid region of
the local controllers covers the space, edge-cost computa-
tion in the replanning phase reduces to zero, because if the
system deviates out of a valid region of a local planner, it
will fall into the valid region of some other planner.

To reduce the complexity of the search algorithm in BRM
and LQG-MP on roadmaps, it is assumed that the costs
on different edges of the roadmap are independent. This
heuristic can reduce the complexity of the algorithm, but
it may still be significantly high compared to the PRM or
FIRM. Moreover, this heuristic (edge-independent assump-
tion) is not true without having belief stabilizers, and thus
search algorithms relying on such a heuristic may result in
solutions arbitrarily different from the true solution of the
search algorithm. Assuming that no such heuristic is used

in the search algorithm, Table 2 summarizes the complexity
of these algorithms.

The huge reduction in the computational complexity of
the planning algorithm (in particular, in the online phase)
opens many possibilities in utilizing POMDP solvers in
real-world applications. Moreover, due to its sampling-
based nature, it ameliorates the curse of dimensionality just
as PRM does in the deterministic case. In other words, if
the dimension of the system increases, we need a greater
number of nodes N in the underlying PRM to capture the
free space connectivity, in which case we cannot use direct
methods due to their complexity. However, FIRM can tol-
erate the increase in the dimension since its complexity is
only a constant multiplier of the PRM complexity.

9.1. Limitations of the SLQG-FIRM and future
directions

In this section, we discuss limitations of the proposed
method. It is important to distinguish which limitation is
associated with the generic FIRM framework, and which
limitation is associated with the particular presented instan-
tiation of the FIRM, that is, the SLQG-FIRM. In some
cases, we also propose ways to remedy these limitations as
future research directions.

Stabilization time: The FIRM framework introduces the
usage of belief stabilizers. However, the time needed for the
belief stabilization procedure is added to the overall execu-
tion time. If the number of time steps along the nominal
path is l, and the number of time steps needed for stabiliza-
tion is τ , the extra time τ is usually negligible compared
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Fig. 9. A result of executing the FIRM plan for an eight-arm
manipulator in a light–dark (sensing) environment. The manipu-
lator is attached to the origin ( 0, 0) and the purple region is the
goal region for the manipulator tip. To unclutter the figure, we
only show the uncertainty of the manipulator tip (end-effector).
The initial mean and covariance are shown in black, and the evo-
lution of the tip covariance during the plan execution is shown in
red. The final estimation mean and the true configuration of the
manipulator are shown in blue and green, respectively. Obstacles
are shown in brown. The manipulator follows a longer but safer
path to the goal region through the left passage, compared to the
shorter but risky (with high collision probability) path through the
right passage.

to l. However, τ can increase as the sensing uncertainty
increases. In such a situation, one can consider two cases: if
obstacles are close to the robot, it is indeed unsafe to move
with a poor estimate, and it is indeed better to lose some
time to gain more information, and then start moving. On
the other hand, if there is no obstacle close to the robot,
then one can increase the size of the corresponding FIRM
node, and thus decrease the extra stopping time. Moreover,
efficient sampling-based methods, which are aware of avail-
able information at different locations of the environment,
and thus aware of the mean stabilization time, can be used
to efficiently sample the nodes in the locations with lower
mean stabilization times. These issues open up new direc-
tions for future research. However, if an application is very
sensitive to the extra time, FIRM may not be a good choice
for it, and methods such as BRM or LQG-MP can result in
better guarantees on execution time.

Controllability and observability: As mentioned in Sec-
tion 5, SLQG-FIRM works for systems that satisfy Property
1, which basically requires the linearized system about the
PRM nodes to be controllable and observable. Although
this includes a large class of systems, it excludes some

important systems, such as non-holonomic systems that
are not linearly controllable about any point. It is worth
noting that this is not a limitation of the generic FIRM
framework, but a limitation of the SLQG-FIRM. More
recent instantiations of FIRM, such as PLQG-based FIRM
(Agha-mohammadi et al., 2012c) or DFL-based FIRM
(Agha-mohammadi et al., 2012a), aim to relax the control-
lability requirements in Property 1 and thus can include
non-holonomic systems as well. However, relaxing the
observability assumption is still an open problem.

Gaussian beliefs: The reachability argument in the
SLQG-FIRM is restricted to Gaussian beliefs. In other
words, we cannot guarantee reachability to some pre-
defined non-Gaussian beliefs with SLQG controllers. This
issue is a subject of future research.

Increasing the uncertainty: Although it may rarely hap-
pen in practice, it is possible to have a situation that leads
to an uncertainty growth during the belief-stabilization pro-
cess. However, this issue can be addressed easily. Notice
that FIRM nodes are known a priori. Thus, at the begin-
ning of each stabilization procedure, we can compare the
current belief with the stationary belief of the stabilizer. If
the current belief has more information than the stationary
belief (e.g. if all eigenvalues of the estimation covariance
are strictly less than the corresponding eigenvalues of the
stationary estimation covariance), we replan from the cur-
rent belief based on Algorithm 2. Therefore, uncertainty
will not be increased during the stabilization procedure.

Locally linearizable systems: If a linear representation of
the system of interest cannot be obtained (e.g. if the system
state lives in a discrete set of states), the class of methods
that use the linearized system as a local approximation of
the true system will not work. In this case, another class
of methods can be adopted which can handle these systems
much better, such as those in Smith and Simmons (2005),
Kurniawati et al. (2008), and Kurniawati et al. (2011). Com-
ing up with belief stabilizers that work in discrete state
space settings to design a discrete-state variant of FIRM is
also an area for future research.

Velocity reduction in dynamical systems: To apply
SLQG-FIRM to dynamical systems, the underlying PRM
samples need to be selected from the equilibrium space, in
other words, they need to have zero velocity. As a result a
reduction in the system’s velocity is expected while trying
to reach the FIRM nodes. However, in many applications,
reducing the speed at nodes to gain the robustness, reli-
ability, and scalability offered by FIRM may be a useful
trade-off. Nevertheless, this reduction in speed may not be
desirable for some applications where the system cannot (or
should not) decrease its velocity. For such systems, Agha-
mohammadi et al. (2013a) propose a FIRM variant based
on periodic controllers which does not require a reduction
in the system’s velocity. However, designing more efficient
variants of FIRM that can sample points with non-zero
velocities without introducing periodicity in the system’s
motion is an interesting future research direction.



28 The International Journal of Robotics Research 0(0)

10. Conclusion

In this paper, we have proposed the FIRM framework for
solving the motion-planning problem under motion and
sensing uncertainties. This problem is originally a POMDP,
whose solution is computationally intractable. Exploiting
feedback controllers, we reduced it to a tractable FIRM
MDP that can be solved using standard DP techniques.
FIRM utilizes feedback controllers to create reachable node
regions in belief space. An important consequence is that
FIRM preserves the optimal substructure property on the
roadmap and thus overcomes the curse of history in the
original POMDP problem. Finally, by computing the col-
lision probabilities, obstacles are also appropriately taken
into account in planning on FIRM. We showed an instan-
tiation of the abstract FIRM framework using SLQG con-
trollers and illustrated the construction and planning results
on it. By extending the probabilistic completeness con-
cept to planners under uncertainty, we also showed that
FIRM is probabilistically complete under uncertainty. We
believe that FIRM provides an important step toward solv-
ing POMDPs and utilizing them as a practical tool for robot
motion planning under uncertainty.
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Appendices

A. Index to Multimedia Extensions

The multimedia extension page is found at
http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Executing the FIRM plan in the environment
shown in Figure 7

2 Video Real-time replanning with FIRM, which shows
the robustness of the method to large
disturbances

B. Time-varying LQG controller

The time-varying LQG controller is often used to track a
pre-planned trajectory (also called a nominal, desired, or
open-loop trajectory) in the presence of process and obser-
vation noise. In principal it is designed (and optimal) for
linear systems with Gaussian noise, but it can also be uti-
lized for stabilizing nonlinear systems locally around the
planned trajectory. An LQG controller is composed of a KF
as an estimator and an LQR as a controller. At every time
step k, the KF provides the a posteriori distribution (belief)
bk over the system state, and the LQR generates control uk

based on bk .
In this appendix, we first discuss the system lineariza-

tion and planned nominal trajectory, and then discuss the
KF, LQR, and LQG corresponding to this nominal trajec-
tory. Consider the nonlinear partially observable state-space
equations of the system as follows:

xk+1 = f ( xk , uk , wk) , wk ∼ N ( 0, Qk) (66a)

zk = h( xk , vk) , vk ∼ N ( 0, Rk) (66b)

A planned nominal trajectory for this system is a
sequence of planned states ( xp

k)k≥0 and planned controls
( up

k)k≥0 such that it is consistent with the noiseless dynam-
ics model; in other words, we have

xp
k+1 = f ( xp

k , up
k , 0) (67)

The planned trajectory can be a finite sequence of some
length N . The role of a closed-loop stochastic controller,
during the trajectory tracking, is to compensate for the
robot’s deviations from the planned trajectory and to keep
the robot close to the planned trajectory in the sense of
minimizing the following quadratic cost:

J =

E

[∑
k≥0

( xk − xp
k)T Wx( xk − xp

k)+( uk − up
k)T Wu( uk − up

k)

]
(68)

where Wx and Wu are positive-definite weight matrices for
the state and control costs, respectively.

Since the state space is not fully observable and is only
partially observable, we do not have access to the perfect
value of the state xk , and thus, we provide the estimate x+k
of the state xk based on the available observations z0:k from
the beginning up to the current time step. Then, based on the
separation principle (Kumar and Varaiya, 1986; Bertsekas,
2007), it can be shown that in a linear system with Gaus-
sian noise, the above minimization in terms of the error
xk − xp

k is equivalent to performing two separate minimiza-
tions based on the estimation error xk−x̂+k and the controller
error x̂+k − xp

k , whose summation is the same as the orig-
inal main error xk − xp

k = ( xk − x̂+k )+( x̂+k − xp
k), where

x̂+k = E[x+k ] = E[xk|z0:k]. As a major consequence, the
design of the stochastic controller with a partially observ-
able state space (LQG) reduces to designing a controller
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with a fully observable state (LQR) and designing an esti-
mator (KF), separately. In the following, we first discuss the
linearization of a nonlinear model. Then we discuss how a
KF and an LQR can be designed for this linearized system.
Finally, we combine them to construct a time-varying LQG
controller.

Model linearization: Given a nominal trajectory
( xp

k , up
k)k≥0, we linearize the dynamics and observation

model in Equation (66) as follows:

xk+1 = f ( xp
k , up

k , 0)+Ak( xk − xp
k)+Bk( uk − up

k)

+ Gkwk , wk ∼ N ( 0, Qk) (69a)

zk = h( xp
k , 0)+Hk( xk − xp

k)+Mkvk , vk ∼ N ( 0, Rk)
(69b)

where

Ak = ∂f

∂x
( xp

k , up
k , 0) , Bk = ∂f

∂u
( xp

k , up
k , 0) ,

Gk = ∂f

∂w
( xp

k , up
k , 0) , Hk = ∂h

∂x
( xp

k , 0) ,

Mk = ∂h

∂v
( xp

k , 0) (70)

Now, let us define the following errors:

• LQG error (main error): ek = xk − xp
k

• KF error (estimation error): ẽk = xk − x̂+k
• LQR error (estimation of LQG error): ê+k = x̂+k − xp

k

Note that these errors are linearly dependent: ek = ê+k +
ẽk . Also, defining δuk = uk − up

k and δzk = zk − zp
k :=

zk − h( xp
k , 0), we can rewrite the above linearized models as

follows:

ek+1 = Akek + Bkδuk + Gkwk (71a)

δzk = Hkek +Mkvk (71b)

KF: In Kalman filtering, we aim to provide an estimate of
the system’s state based on the available partial information
we have obtained up to time k, that is, z0:k . The state esti-
mate is a random vector denoted by x+k , whose distribution
is the conditional distribution of the state on the obtained
observations so far, which is called belief and is denoted
by bk :

bk = p( x+k )= p( xk |z0:k) (72)

x̂+k = E[xk|z0:k] (73)

Pk = C[xk|z0:k] (74)

where E[·|·] and C[·|·] are the conditional expectation and
conditional covariance operators, respectively. In the Gaus-
sian case, we have bk = N ( x̂+k , Pk); in other words, the
belief can be characterized only by its mean and covariance,
that is, bk ≡ ( x̂+k , Pk).

Kalman filtering consists of two steps at every time stage:
a prediction step and an update step. In the prediction step,
the mean and covariance of prior x−k are computed. For the
system in Equation (71), the prediction step is

ê−k+1 = Ak̂e+k + Bkδuk (75)

P−k+1 = AkP+k AT
k + GkQkGT

k (76)

In the update step, the mean and covariance of posterior x+k
are computed. For the system in Equation (71), the update
step is

Kk = P−k HT
k ( HkP−k HT

k +MkRkMT
k )−1 (77)

ê+k+1 = ê−k+1 + Kk+1( δzk+1 − Hk+1̂e−k+1) (78)

P+k+1 = ( I − Kk+1Hk+1) P−k+1 (79)

Note that

x̂+k = E[xk|z0:k] = xp
k + ê+k = xp

k + E[ek|z0:k] (80)

Pk = C[xk|z0:k] = P+k = C[ek|z0:k] (81)

LQR controller: Once we obtain the belief from the filter,
a controller can generate an optimal control signal accord-
ingly. In other words, we have a time-varying mapping μk

from the belief space into the control space that generates
an optimal control based on the given belief uk = μk( bk) at
every time step k. The LQR controller is of this kind and it
is optimal in the sense of minimizing the following cost:

JLQR =

E

[∑
k≥0

( x̂+k − xp
k)T Wx( x̂+k − xp

k)+( uk − up
k)T Wu( uk − up

k)

]

= E

[∑
k≥0

( ê+k )T Wx( ê+k )+ ( δuk)T Wu( δuk)

]
(82)

The linear control law that minimizes this cost function for
a linear system is of the form

δuk = −Lk̂e+k (83)

where the time-varying feedback gains Lk can be computed
recursively as follows:

Lk = ( BT
k Sk+1Bk +Wu)−1 BT

k Sk+1Ak (84)

Sk = Wx + AT
k Sk+1Ak − AT

k Sk+1BkLk (85)

If the nominal path is of length N , then SN = Wx

is the initial condition of the above recursion, which is
solved backwards in time. Note that the full control is
uk = up

k + δuk .
LQG controller: Plugging the obtained LQR control law

into the Kalman filtering equations, we obtain the following
error dynamics for the defined errors:(

ek+1

ẽk+1

)
=

(
Ak − BkLk BkLk

0 Ak − Kk+1Hk+1Ak

)(
ek

ẽk

)
+

(
Gk 0

Gk − Kk+1Hk+1Gk −Kk+1Mk+1

)(
wk

vk+1

)
(86)

or equivalently,(
ek+1
ê+k+1

)
=

(
Ak −BkLk

Kk+1Hk+1Ak Ak − BkLk − Kk+1Hk+1Ak

)(
ek
ê+k

)
+

(
Gk 0

Kk+1Hk+1Gk Kk+1Mk+1

)(
wk

vk+1

)
(87)
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Defining ζk := ( ek , ê+k )T and qk := ( wk , vk+1)T, we can
rewrite Equation (87) in a more compact form as

ζk+1 = Fkζk + Gkqk , qk ∼ N ( 0, Qk) ,

Qk =
(

Qk 0
0 Rk+1

)
(88)

with appropriate definitions for Fk and Gk .
The above equation, along with the equation on estima-

tion covariance propagation,

Pk+1 = ( I − Kk+1Hk+1) ( AkPkAT
k + GkQkGT

k ) (89)

characterize the evolution of state xk and belief bk ≡
( x̂+k , Pk) under the time-varying LQG controller.

C. SLQG controller

The SLQG controller is often used to regulate (or stabilize)
the system state to a pre-planned point (also called the set-
point, nominal, or desired point) in the presence of process
and observation noise. In principal it is designed (and opti-
mal) for linear systems with Gaussian noise, but it can also
be utilized for stabilizing nonlinear systems locally around
the planned point. The SLQG controller is composed of a
stationary Kalman filter (SKF) as an estimator and a sta-
tionary linear quadratic regulator (SLQR) as a controller.
At every time step k, the SKF provides the a posteriori dis-
tribution (belief) bk over the system state, and the SLQR
generates control uk based on bk .

In this appendix, we first discuss the system linearization
around the planned point, and then discuss the SKF, SLQR,
and SLQG corresponding to this nominal point. Consider
the nonlinear partially observable state-space equations of
the system as follows:

xk+1 = f ( xk , uk , wk) , wk ∼ N ( 0, Qk) (90a)

zk = h( xk , vk) , vk ∼ N ( 0, Rk) (90b)

and consider a planned state point xp, to whose vicinity
the controller has to drive the system. If the system state
reaches the point xp, it is assumed that the system remains
there with zero control, up = 0, in other words,

xp = f ( xp, 0, 0) (91)

The role of a closed-loop stochastic controller during the
state regulation is to compensate for robot deviations from
the desired point due to noise effects, and to drive the robot
close to the desired point in the sense of minimizing the
following quadratic cost:

J = E

[∑
k≥0

( xk − xp)T Wx( xk − xp)+( uk)T Wu( uk)

]
(92)

where Wx and Wu are positive-definite weight matrices for
the state and control costs, respectively.

Again, similar to the time-varying case, since we only
have imperfect information about the state xk , we have to
make the estimate x+k about the state based on the avail-
able observations z0:k . Accordingly, the controller gener-
ates the control signal based on the estimated value of the
state; i.e., belief. Based on the separation principle (Bert-
sekas, 2007), in a linear system with Gaussian noise, min-
imization of the cost in Equation (92) is equivalent to per-
forming two separate minimizations that lead to the sep-
arate design of the SKF and SLQR. In the following, we
first discuss the linearization of a nonlinear model, and then
we discuss how the SKF and the SLQR can be designed
for this linearized system, and finally, we combine them to
construct an SLQG controller.

Model linearization: Given a desired point xp, we lin-
earize the dynamics and observation model in Equation (90)
as follows:

xk+1 = f ( xp, 0, 0)+As( xk − xp)+Bs( uk − 0)

+Gswk , wk ∼ N ( 0, Qs) (93a)

zk = h( xp, 0)+Hs( xk − xp)+Msvk , vk ∼ N ( 0, Rs)

(93b)

where

As = ∂f

∂x
( xp, 0, 0) , Bs = ∂f

∂u
( xp, 0, 0) , Gs = ∂f

∂w
( xp, 0, 0)

Hs = ∂h

∂x
( xp, 0) , Ms = ∂h

∂v
( xp, 0) (94)

Now, let us define the following errors:

• SLQG error (main error): ek = xk − xp

• SKF error (estimation error): ẽk = xk− x̂+k , where x̂+k =
E[x+k ] = E[xk|z0:k]

• SLQR error (estimation of SLQG error): ê+k = x̂+k − xp

Note that these errors are linearly dependent: ek = ê+k + ẽk .
Defining δuk := uk and δzk := zk − zp = zk − h( xp, 0), we
can rewrite the above linearized models as follows:

ek+1 = Asek + Bsδuk + Gswk (95a)

δzk = Hsek +Msvk (95b)

SKF: In SKF, we aim to provide an estimate of the sys-
tem’s state based on the available partial information we
have obtained up to time k, that is, z0:k . The state esti-
mate is a random vector denoted by x+k , whose distribution
is the conditional distribution of the state on the obtained
observations so far, which is called belief and is denoted by
bk = p( x+k )= p( xk|z0:k). In the Gaussian case, the belief
can only be characterized by its mean and covariance, that
is, bk ≡ ( x̂+k , Pk). Thus, in the Gaussian case, we can write

bk = p( x+k )= p( xk |z0:k)= N ( x̂+k , Pk)⇔ bk ≡ ( x̂+k , Pk)
(96)

x̂+k = E[xk|z0:k], Pk = C[xk|z0:k] (97)
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where E[·|·] and C[·|·] are the conditional expectation and
conditional covariance operators, respectively.

SKF consists of two steps at every time stage: a predic-
tion step and an update step. In the prediction step, the mean
and covariance of prior x−k are computed. For the system in
Equation (95) the prediction step is

ê−k+1 = Aŝe
+
k + Bsδuk (98)

P−k+1 = AsP
+
k AT

s + GsQsG
T
s (99)

In the update step, the mean and covariance of posterior x+k
are computed. For the error system in Equation (95), the
update step is

Kk = P−k HT
s ( HsP

−
k HT

s +MsRsM
T
s )−1 (100)

ê+k+1 = ê−k+1 + Kk+1( δzk+1 − Hŝe
−
k+1) (101)

P+k+1 =( I − Kk+1Hs) P−k+1 (102)

Note that

x̂+k = xp + ê+k , Pk = P+k (103)

In SKF, if ( As, Hs) is an observable pair and ( As, Q̌s) is a
controllable pair, where GsQsGT

s = Q̌sQ̌T
s , then the prior

and posterior covariances P−k and Pk and the filter gain Kk

all converge to their stationary values, denoted by P−s , Ps,
and Ks, respectively (Bertsekas, 2007). P−s can be computed
by solving the following DARE in Equation (104). Having
P−s , the stationary gain Ks and estimation covariance Ps are
computed as follows:

P−s = GsQsG
T
s

+ As( P−s − P−s HT
s ( HsP

−
s HT

s +MsRsM
T
s )−1 HsP

−
s ) AT

s
(104)

Ks = P−s HT
s ( HsP

−
s HT

s +MsRsM
T
s )−1 (105)

Ps = ( I − KsHs) P−s (106)

SLQR controller: In the SLQR we have a stationary map-
ping μs from the belief space to the control space that
generates an optimal control based on the given belief uk =
μs( bk) at every time step k. The SLQR controller is optimal
in the sense of minimizing the following cost:

JSLQR = E

[∑
k≥0

( x̂+k − xp)T Wx( x̂+k − xp)+( uk)T Wu( uk)

]

= E

[∑
k≥0

( ê+k )T Wx( ê+k )+( δuk)T Wu( δuk)

]
(107)

If ( As, Bs) is a controllable pair and ( As, W̌x) is an observ-

able pair, where W̌x
T
W̌x = Wx, then the stationary linear

control law that minimizes the cost function JSLQR for a
linear system is of the form

δuk = −Lŝe
+
k (108)

where the stationary feedback gain Ls can be computed as
follows:

Ls = ( BT
s SsBs +Wu)−1 BT

s SsAs (109)

Ss = Wx + AT
s SsAs − AT

s SsBsLs (110)

where the second equation is indeed a DARE that can be
efficiently solved for Ss. Plugging Ss into Equation (109),
we get the feedback gain Ls.

SLQG controller: Plugging the obtained control law of
SLQR into the SKF equations, we can get the following
stationary dynamics for the defined errors:(

ek+1

ẽk+1

)
=

(
As − BsLs BsLs

0 As − KsHsAs

)(
ek

ẽk

)
+

(
Gs 0

Gs − KsHsGs −KsMs

)(
wk

vk+1

)
(111)

or equivalently,(
ek+1

ê+k+1

)
=

(
As −BsLs

KsHsAs As − BsLs − KsHsAs

)(
ek

ê+k

)
+

(
Gs 0

KsHsGs KsMs

)(
wk

vk+1

)
(112)

Defining ζk := ( ek , ê+k )T and qk := ( wk , vk+1)T, we can
rewrite Equation (112) in a more compact form as

ζk+1 = Fsζk + Gsqk , qk ∼ N ( 0, Qs) , Qs =
(

Qs 0
0 Rs

)
(113)

with appropriate definitions for Fs and Gs.
It can be shown that if Fs is a stable matrix (i.e.

limκ→∞( Fs)κ = 0), ζk converges i.d. to ζs ∼ N ( 0,Ps).
Stationary covariance Ps is the solution of the following
Lyapunov equation:

Ps = FsPsF
T
s + GsQsG

T
s (114)

Note that Ps can be decomposed into four blocks,

Ps =
(
Ps,11 Ps,12

Ps,21 Ps,22

)
(115)

such that Ps,11 = limk→∞C[ek] and Ps,22 =
limk→∞C[̂e+k ]. Therefore, since x̂+k = xp + ê+k , the estima-
tion mean also converges to a stationary random variable,
denoted by x̂+s :

x̂+s := lim
k→∞

x̂+k ∼ N ( xp,Ps,22) (116)

Due to the linear relation ek = ê+k + ẽk , we can also
conclude limk→∞ C[̃ek] = Ps,11 + Ps,22 − 2Ps,12. It can be
proven that in SLQG, the stability of matrix Fs is a direct
consequence of the controllability of pair ( As, Bs) and the
observability of pair ( As, Hs) (Bertsekas, 1976, 2007).
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Thus, collecting all the conditions, if ( As, Bs) and
( As, Q̌s) are controllable pairs, where GsQsGT

s = Q̌sQ̌T
s ,

and if ( As, Hs) and ( As, W̌x) are observable pairs, where
Wx = W̌ T

x W̌x, then the belief bk converges in distribution
to a stationary belief under the SLQG:

bs := lim
k→∞

bk = N ( x̂+s , P+s ) (117)

where P+s is a deterministic quantity and we can character-
ize the distribution over the stationary belief as

bs ≡ ( x̂+s , P+s )∼ N
((

xp

P+s

)
,

(
Ps,22 0

0 0

))
(118)

D. Proof of Lemma 3

Proof. Let us consider the state-space model of the linear
system of interest as follows:

xk+1= Axk + Buk +Gwk , wk ∼ N ( 0, Q) (119a)

zk= Hxk + vk , vk ∼ N ( 0, R) (119b)

Based on Lemma 1, if ( A, B) and ( A, Q̌) are controllable
pairs, where GQGT = Q̌Q̌T, and if ( A, H) and ( A, W̌x) are
observable pairs, where Wx = W̌T

x W̌x, then the estimation
covariance deterministically tends to a stationary covari-
ance Ps. Therefore, for any ε > 0, after a deterministic
finite time, Pk enters the ε-neighborhood of the stationary
covariance, denoted by Ps.

The estimation mean dynamics, however, are stochastic
and are as follows for the system in Equation (119):

x̂+k+1 = v+( A− BL−Kk+1HA) ( x̂+k − v)

+Kk+1HA( xk − v)+Kk+1HGwk +Kk+1vk+1

= v−( A− BL) v+( A− BL−Kk+1HA) x̂+k
+Kk+1HAxk +Kk+1HGwk +Kk+1vk+1 (120)

where the Kalman gain Kk is

Kk = P−k HT ( HP−k HT + R)−1 (121)

Since K is full rank (due to the condition on the rank of H),
and since v and w represent Gaussian noise, Equation (120)
induces an irreducible Markov process over the state space
(Meyn and Tweedie, 2009). Thus, if we have a stopping
region for the estimation mean with size ε > 0, the esti-
mation mean process will hit this stopping region in finite
time (Meyn and Tweedie, 2009), with probability one.

Based on the estimation mean dynamics in Equation
(120) and the state dynamics in Appendix C, in the absence
of a stopping region, if the estimation mean process and
state process start from x̂+0 and x0 respectively, such that
E[̂x+0 ] = v and E[x0] = v (which indeed is the case in
FIRM due to the usage of edge controllers), ‘the mean of
estimation mean’ remains on v. That is, E[̂x+k ] = v, for
all k. As a result, if we center the stopping region for the

estimation mean at v, the probability of hitting the stopping
region is maximized and the stopping time is minimized.

Combining the results for estimation covariance and esti-
mation mean, if we define the region B as a set in the
Gaussian belief space with a non-empty interior centered
at ( v, Ps), the belief bk ≡ ( x̂+k , Pk) enters region B in finite
time with probability one. Thus, the pair ( B, μ) is a proper
pair over GB; in other words, B is reachable under μ starting
from any Gaussian distribution.

E. Proof of Lemma 4

Before proving Lemma 4, we state and prove the following
lemma.

Lemma 5. Consider the bounded function 0 ≤ f (X )≤ 1,
and kernel k(X ′,X )≥ 0. Then, for any set A, we have

‖
∫
A

k(X ′,X ) f (X ′) dX ′‖ ≤ ‖
∫
A

k(X ′,X ) dX ′‖ (122)

Proof. Given the properties of f (·) and k( ·, ·), we have
k(X ′,X ) f (X ′)≤ k(X ′,X ), for all X and X ′. Taking
the integral from both sides with respect to X ′ and then
taking the supremum norm with respect to X , the result
follows.

Now we prove Lemma 4.

Proof. If we denote the domain of operator TS by D, we
know that for all f ∈ D we have 0 ≤ f (X )≤ 1, because
f (X ) is the probability of reaching given set S under some
given controller invoked at point X . Thus, it cannot be
negative or greater than one, and based on Lemma 5, we
have

TS [f ] =
∫
S

pμ(X ′|X ) f (X ′) dX ′

≤
∫
S

pμ(X ′|X ) dX ′ = P1(S|X , μ)≤ 1

(123)

Therefore, based on the definition of operator norm, we
have

‖TS‖op = sup
f (·)
{‖TS [f ]‖ : ∀f ∈ D, ‖f ‖ ≤ 1} ≤ 1 (124)

According to Assumption 1, there exists a finite number N
such that

inf
X

Pn(S|X , μ)= β > 0 ∀n > N (125)

where ‘inf’ and ‘sup’ denote the infimum and supremum,
respectively. Thus, we have

‖Pn(S|X , μ) ‖ = sup
X

( 1− Pn(S|X , μ))

= 1− inf
X

Pn(S|X , μ)

= 1− β < 1 ∀n > N (126)
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Let us denote the nth iterated kernel of TS as
pn(X ′|X , μ). Since this iterated kernel is a pdf, we have
pn(X ′|X , μ)≥ 0, ∀X ,∀X ′,∀n. We can write

‖TN
S [f ] ‖ = ‖

∫
S

pN (X ′|X , μ) f (X ′) dX ′‖

≤ ‖
∫
S

pN (X ′|X , μ) dX ′‖ = ‖PN (S|X , μ) ‖ ≤ α < 1

(127)

where α = 1 − β, and similar to Equation (124), we get
‖TN

S‖op ≤ α < 1. From the operator norm properties, we
have

‖TN+1
S ‖op ≤ ‖TN

S‖op‖TS‖op ≤ α < 1

and similarly for all n ≥ N , we have

‖Tn
S‖op ≤ α < 1 ∀n ≥ N

Now, consider the series:
∑∞

i=1 ‖Tn
S‖op. We can split the

sum into smaller pieces as follows:

∞∑
n=1

‖Tn
S‖op =

N∑
n=1

‖Tn
S‖op +

∞∑
i=1

(i+1)N∑
n=iN+1

‖Tn
S‖op

But because ‖Tn+1
S ‖op ≤ ‖Tn

S‖op for all n ≥ N , we have

(i+1)N∑
n=iN+1

‖Tn
S‖op ≤ N‖TiN

S ‖op

Also, we know

‖TiN
S ‖op ≤ ‖TN

S‖i
op ≤ αi

and thus, we have

∞∑
n=1

‖Tn
S‖op =

N∑
n=1

‖Tn
S‖op︸ ︷︷ ︸

≤N

+
∞∑

i=1

(i+1)N∑
n=iN+1

‖Tn
S‖op

≤ N +
∞∑

i=1

Nαi = N + N

1− α
= c <∞

F. Proof of Corollary 1

Proof. We know ‖R‖ ≤ 1, and thus we can write

‖
∞∑

n=0

Tn
S [R]‖ ≤

∞∑
n=0

‖Tn
S‖op‖R‖ ≤

∞∑
n=0

‖Tn
S‖op ≤ c <∞

Thus, series
∑∞

n=0 Tn
S [R] is a convergent series and we can

define the operator ( I−TS )−1 [R] =∑∞
n=0 Tn

S [R]. We have

‖( I − TS )−1 ‖op = ‖
∞∑

n=0

Tn
S‖op ≤ c <∞ (128)

G. Proof of Proposition 1

We first state and prove the following lemma on the con-
tinuity of the transition probability in the local controller’s
parameter.

Lemma 6. Given Assumption 2, there exists a c2 <∞ such
that

‖p(X ′|X , μ( b; v) )− p(X ′|X , μ̌( b; v̌) ) ‖ ≤ c2‖v− v̌‖
(129)

Proof. The result directly follows by combining the two
parts of Assumption 2.

Now we are ready to prove Proposition 1.

Proof. To show P(B|X , μ) is continuous in v, we perturb
v to some v̌, such that ‖v − v̌‖ < r. The local controller
associated with node v̌ is referred to as μ̌, whose success-
ful absorption region is denoted by B̌ and whose stopping
region is Š . Similarly, the corresponding transient operator
and recurrent function are referred to as ŤŠ and Ř respec-
tively. Finally, the success probability associated with the
perturbed node v̌ is P( B̌|X , μ̌). To shorten the statements,
we refer to P(B|X , μ) and P( B̌|X , μ̌) respectively as P(X )
and P̌(X ). As a result of node perturbation, the success
probability is perturbed as

P(B|X , μ)−P( B̌|X , μ̌):=P−P̌= R+TS [P]−Ř−ŤŠ [P̌]

= R−Ř+TS [P]−TS [P̌]+TS [P̌]−TŠ [P̌]+TŠ [P̌]−ŤŠ [P̌]

= ( R−Ř)+TS [P − P̌]+( TS−TŠ ) [P̌]+( TŠ−ŤŠ ) [P̌]

where

TŠ [f (·) ] (X ) :=
∫
Š

pμ(X ′|X ) f (X ′) dX ′ (130)

Let us define the operators T�S := ( TS−TŠ ) and �TŠ :=
( TŠ − ŤŠ ). Now, based on Corollary 1, we can write

P− P̌ = ( I − TS )−1
[
R− Ř+ T�S [P̌]+�TŠ [P̌]

]
(131)

and thus the following inequality holds on the supremum
norm of the perturbation of the absorption probability:

‖P− P̌‖
≤ ‖( I−TS )−1 ‖op

(
‖R− Ř‖+‖T�S [P̌]‖+‖�TŠ [P̌]‖

)
≤ c

(
‖R− Ř‖ + ‖T�S [P̌]‖ + ‖�TŠ [P̌]‖

)
= c (‖K1(X ) ‖ + ‖K2(X ) ‖ + ‖K3(X ) ‖) (132)

where K1(X ) := R(X )−Ř(X ), K2(X ) := T�S [P̌(·) ](X ),
and K3(X ) := �TŠ [P̌(·) ](X ). In the following we bound

K1, K2, and K3, and thus bound ‖P− P̌‖, accordingly.



36 The International Journal of Robotics Research 0(0)

G.1. Bound for K1(X )

The supremum norm of K1(X ) is

‖K1(X ) ‖ = ‖R(X )− Ř(X ) ‖
= ‖

∫
B

pμ(X ′|X ) dX ′ −
∫
B̌

pμ̌(X ′|X ) dX ′‖

= ‖
∫

B∩B̌

[pμ(X ′|X )−pμ̌(X ′|X ) ] dX ′

+
∫

B−B̌

pμ(X ′|X ) dX ′ −
∫

B̌−B

pμ̌(X ′|X ) dX ′‖

≤
∫

B∩B̌

‖pμ(X ′|X )−pμ̌(X ′|X ) ‖ dX ′

+ ‖
∫

B−B̌

pμ(X ′|X ) dX ′ +
∫

B̌−B

pμ̌(X ′|X ) dX ′‖

from (129)≤
∫

B∩B̌

c2‖v− v̌‖dX ′ + ‖P1(B � B̌|X , μ) ‖

+ ‖P1( B̌ � B|X , μ̌) ‖
from (50)≤ c′2‖v− v̌‖ + 2c′‖v− v̌‖ = γ1‖v− v̌‖ (133)

where c′2 < ∞ and γ1 = c′2 + 2c′ < ∞. In the penulti-
mate inequality, we also used the fact that P1( B̌−B|X , μ̌)≤
P1( B̌ � B|X , μ̌) and P1(B − B̌|X , μ)≤ P1(B � B̌|X , μ)
because B̌ − B ⊆ B̌ � B and B − B̌ ⊆ B � B̌.

G.2. Bound for K2(X )

We have

‖K2(X ) ‖ = ‖T�S [P̌]‖ = ‖TS [P̌]− TŠ [P̌]‖
= ‖

∫
S

pμ(X ′|X ) P̌(X ′) dX ′ −
∫
Š

pμ(X ′|X ) P̌(X ′) dX ′‖

=‖
∫

S−Š

pμ(X ′|X ) P̌(X ′) dX ′ −
∫

Š−S

pμ(X ′|X ) P̌(X ′) dX ′‖

≤‖
∫

S−Š

pμ(X ′|X ) P̌(X ′) dX ′ +
∫

Š−S

pμ(X ′|X ) P̌(X ′) dX ′‖

=‖
∫

S�Š

pμ(X ′|X ) P̌(X ′) dX ′‖ from (122)≤ ‖
∫

S�Š

pμ(X ′|X ) dX ′‖

= ‖P1(S � Š|X , μ) ‖ ≤ ‖P1(B � B̌|X , μ) ‖

= ‖P1(B � B̌|X , μ) ‖ from (50)≤ γ2‖v− v̌‖ (134)

where γ2 = c′ < ∞. The penultimate inequality and
equality follow from the relations S � S ′ ⊆ B � B′ and
B � B′ = B � B′, respectively.

G.3. Bound for K3(X )

We have

‖K3(X ) ‖ = ‖�TŠ [P̌]‖ = ‖TŠ [P̌]− ŤŠ [P̌]‖
= ‖

∫
Š

pμ(X ′|X ) P̌(X ′) dX ′ −
∫
Š

pμ̌(X ′|X ) P̌(X ′) dX ′‖

= ‖
∫
Š

(
pμ(X ′|X )−pμ̌(X ′|X )

)
P̌(X ′) dX ′‖

≤
∫
Š

‖pμ(X ′|X )−pμ̌(X ′|X ) ‖‖P̌(X ′) ‖ dX ′

from (129)≤
∫
Š

c2‖v− v̌‖ dX ′ = γ3‖v− v̌‖ (135)

where γ3 <∞.
Therefore, based on Equations (132)–(135), we can con-

clude that

‖P(B|X , μ)−P( B̌|X , μ̌) ‖ ≤ γ ‖v− v̌‖ (136)

where γ = c( γ1 + γ2 + γ3) < ∞, which completes the
proof that the absorption probability under the controller μ

is continuous in the PRM node v.

H. Proof of Theorem 1

Before starting the proof of Theorem 1, we state the follow-
ing proposition that concludes the continuity of the success
probability of π (overall planner) given the continuity of the
success probability of μij (the individual local planners).

Proposition 2. (Continuity of success probability of π ) The
success probability P( success|b0, π ) is continuous in V if
the absorption probabilities P( Bj|b, μij) are continuous in
vj for all i, j, and b.

Proof. Given that P( Bj|b, μij) is continuous in vj, for all
i, j, we want to show that P( success|π , b0) is continuous
in all vj. First, let us look at the structure of the success
probability:

P( success|b0, π )= P(B( μ0) |b0, μ0) P( success|B( μ0) , πg)
(137)

where μ0 is computed using Equation (34). The term
P( B( μ0) |b0, μ0) on the right-hand side of Equation (137)
is continuous because the continuity of P( Bj|b, μij) for all
i, j is assumed in this proposition. Thus, we only need to
show the continuity of the second term in Equation (137).
Without loss of generality we can consider Bi = B( μ0).
Then, we need to show that P( success|Bi, πg) is continuous
in vi for all i.

As we saw in Section 6.7, the probability of success from
the ith FIRM node is as follows:

P( success|Bi, πg)= �T
i ( I −Q)−1 Rg (138)
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Moreover, we can consider Bgoal = BN without loss of gen-
erality; then, the ( i, j)th element of matrix Q is Q[i, j] =
P( Bi|Bj, πg( Bj) ), and the jth element of vector Rg is
Rg[j] = P( BN |Bj, πg( Bj) ).

Since we considered Bj as the stopping region of the local
controller μij, we have

P( Bj|Bi, μil)= 0, if l �= j (139)

Therefore, all non-zero elements in the matrices Rg and
Q are of the form P( Bj|Bi, μij). Thus, given the continu-
ity of P( Bj|b, μij), the transition probability P( Bj|Bi, μij)
is continuous and the matrices Rg and Q are continuous.
Therefore, P( success|Bi, πg) and thus P( success|b0, π ) are
continuous in underlying PRM nodes.

Now we are ready to prove Theorem 1.

Proof. Based on the definition of probabilistic complete-
ness under uncertainty, if there exists a successful policy
π̌ , FIRM has to find a successful policy π as the num-
ber of FIRM nodes increases unboundedly. Thus, we start
by assuming that there exists a successful policy π̌ ∈ �

for a given initial belief b0. Since each policy in � is
parametrized by a PRM graph, there exists a PRM with
nodes V̌ = {v̌i}Ni=1 that parametrizes the policy π̌ . Since
π̌ is a successful policy, we know P( success|b0, π̌ ) > pmin.
Thus, we can define ε∗ = P( success|b0, π̌ )−pmin > 0.

Given Assumptions 1, 2, and 3, and based on
Propositions 1 and 2, we know that P( success|b0, π )
is continuous with respect to the parameters of the
local planners. In other words, for any ε > 0, there
exists a δ > 0 such that if ‖V − V̌‖ < δ, then
|P( success|b0, π ( ·;V))−P( success|b0, π̌ ( ·; V̌)) | < ε. The
notation ‖V − V̌‖ < δ means that ‖vi− v̌i‖ < δ, for all i, or
equivalently, vi ∈ �̌i, for all i, where �̌i is a ball with radius
δ, centred at v̌i.

Therefore, for the introduced ε∗, there exists a δ∗ and
corresponding regions {�̌i}Ni=1 such that if we have a PRM
whose nodes (or a subset of whose nodes: a subset of
nodes is sufficient, because the success probability is a non-
decreasing function in terms of the number of nodes) satisfy
the condition v∗i ∈ �̌i for all i = 1, . . . , N , then the plan-
ner π parametrized by this PRM has a success probability
greater than pmin, that is, P( success|b0, π ( ·;V)) > pmin, and
hence π is successful.

Since δ > 0, the regions �̌i have non-empty interiors.
Consider a PRM with a sampling algorithm under which
there is a non-zero probability of sampling in �̌i, such
as uniform sampling. Then, starting with any PRM, if we
increase the number of nodes, a PRM node will eventually
be chosen at every �̌i with probability one. Therefore the
policy constructed based on these nodes will have a success
probability greater than pmin; in other words, we eventu-
ally get a successful policy if one exists. Thus, FIRM is
probabilistically complete under uncertainty.




